
Carnegie Mellon University

A S P E C T R A L S E R I E S A P P R O A C H T O H I G H - D I M E N S I O N A L

N O N PA R A M E T R I C I N F E R E N C E

A Dissertation Submitted to the Graduate School in Partial

Fulfillment of the Requirements

For the Degree

Doctor of Philosophy

in

Statistics

by

Rafael Izbicki

Department of Statistics

Carnegie Mellon University

Pittsburgh , PA 15213

April 2014



Rafael Izbicki: A Spectral Series Approach to High-Dimensional Nonparametric Infer-

ence,

c© April 2014

All rights reserved



Dedicated to my grandmother Rebecca.





A B S T R A C T

A key question in modern statistics is how to make efficient inferences for com-

plex, high-dimensional data, such as images, spectra, and trajectories. While a large

body of work has revolved on adapting nonparametric regression methods to high

dimensions, statisticians have devoted less effort to redesigning estimators of other

quantities to such settings. Some of these tasks are of key importance for the sci-

ences; an example is the conditional density estimation problem, which plays an

important role in modern cosmology. In this thesis, we propose a nonparametric

framework for estimating unknown functions in high dimensions. The basic idea

is to expand these functions in terms of a spectral basis – the eigenfunctions of a

kernel-based operator. If the kernel is appropriately chosen, then the eigenfunc-

tions adapt to the intrinsic geometry of the data, forming an efficient Fourier-like

orthogonal basis for smooth functions on the data. We show how this framework

can be used for estimating a regression curve, a conditional density, a likelihood

function, or a density ratio. We provide theoretical guarantees on the developed

estimators, we discuss their computational aspects, and we illustrate their use for

several applications in astronomy, including estimation of photometric redshift

distributions under selection bias.
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1

I N T R O D U C T I O N

A challenging problem in modern statistics is how to handle complex, high-

dimensional data, such as images, spectra, and trajectories. While a large body

of work has revolved around adapting nonparametric regression methods to high-

dimensions, statisticians have devoted less effort to redesigning estimators of other

quantities to such settings. However, some of these tasks are of extreme impor-

tance for the sciences; an example is the conditional density estimation problem,

which plays an important role in modern cosmology (e.g., Sheldon et al. 2012). It

is therefore essential to develop efficient tools for performing such tasks in high-

dimensions.

In this thesis we provide a new framework for nonparametric high-dimensional

inference; that is, we present a tool that can be used for estimation tasks other

than regression analysis. The idea is to approximate functions of interest by us-

ing series expansions. More precisely, we estimate functions by expanding them

into a well chosen Hilbert basis that adapts to the data structure. Unfortunately,

standard Fourier-like bases used in traditional nonparametric curve estimation are

not well suited for high-dimensional problems. Instead, we propose to use spectral

bases - the eigenfunctions of kernel-based operators. We will see that such bases

allows one to build flexible methods that have good computational and statistical

properties for high-dimensional data.

It is widely known that, without extra assumptions, it is not possible to learn

functions in high-dimensions with a reasonable sample size, a phenomenon known

3



4 Introduction

as the “curse of dimensionality” (Bellman 1961). The assumption we make in this

thesis is that although the data x live in a high-dimensional space, they have a

sparse structure. “Sparse” here refers to a situation where the underlying data dis-

tribution, P(x), places most of its mass on a subset X of Rd of small Lebesgue

measure. This scenario includes, but is not limited to, hyperplanes, Riemannian

submanifolds of Rd, and high-density clusters separated by low-density regions.

In practice, x often lives in spaces with these structures; e.g., this is typically the

case of images, spectra, trajectories, movies, etc; see Figure 1.1. See also Tenenbaum

et al. (2000), Belkin and Niyogi (2001), Kpotufe (2010), and Cheng and Wu (2013)

for many other examples. As an illustration, consider the ZIP Code database from

USPS (Hastie et al. 2001). These data are composed of images stored as 16× 16 ma-

trices, i.e., the sample space has dimension 256. However, not every 16× 16 matrix

represents an image of a digit. In fact, only a very small number of them represent

the image of any object a human being would be able to recognize. Hence, the real

dimensionality of ZIP Code data is much smaller than 256, although it not always

obvious how to take this into account in the analyses of interest.

1.1 Previous Work

Although we leave a thorough discussion of previous literature to Chapters 3-6

– in which we discuss how to apply the spectral series method to different tasks –

here we briefly overview it.

1.1.1 High-Dimensional Inference

Several works attempt to avoid the curse of dimensionality for the specific task

of estimating a regression curve. While many approaches are based on variable selec-

tion and lasso-type regularization (e.g., Tibshirani 1996; Lafferty and Wasserman

2008; Ravikumar et al. 2009; Fan et al. 2011), there has been a growing interest in

methods that take advantage of the fact that data often live close to a submanifold
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of the sample space (e.g., Pelletier 2006; Bickel and Li 2007; Aswani et al. 2011;

Cheng and Wu 2013). Another important class of algorithms consists of perform-

ing a regularization in a Reproducing Kernel Hilbert Space (RKHS), the so-called

kernel machine learning (Schölkopf and Smola 2001; Cucker and Zhou 2007). As

we will see, this technique has some similarities to our method. See Chapter 3 for

a more detailed review of these and other regression methods.
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Figure 1.1: Examples of data with large ambient dimensionality, but small intrinsic

dimensionality. Although such data has hundreds, or even thousands

of dimensions, these are highly redundant. Source: Galaxy image pro-

vided by ESA/Hubble.

On the other hand, there are very few attempts of estimating other unknown

quantities than the regression curve in high dimensions. Most of them rely on

a dimension reduction of the covariates prior to implementation (e.g., Pelletier

2005; Hall and Yao 2005; Fan et al. 2009; Sugiyama et al. 2011; Buchman et al.

2011). As is the case with any data reduction, such a step can result in significant
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loss of information, which is in general hard to quantify both theoretically and

empirically. Only a few other works propose different methodologies (e.g., Hall

et al. 2004; Liu et al. 2007; Efromovich 2007; Buchman 2011). In the subsequent

chapters we summarize relevant work for the specific tasks we deal with.

1.1.2 Spectral Methods

Spectral methods have emerged as an efficient tool for finding low-dimensional

structure in high-dimensional data via the eigendecomposition of certain data-

dependent matrices. They have been successfully used in the literature of cluster-

ing (Shi et al. 2009), classification (Sinha and Belkin 2009), dimension reduction

and manifold learning (Schölkopf et al. 1997; Belkin and Niyogi 2003; Coifman

and Lafon 2006). On the other hand, only a limited amount of work use them as

way of creating a basis for approximating functions of interest (Nadler et al. 2009;

Zhou and Srebro 2011; Ji et al. 2012). As a matter of fact, these are typically con-

cerned with the regression function only, and deal mainly with a semi-supervised

learning setting. Moreover, they do not explore the computational benefits one can

obtain via orthogonality of the basis functions. An exception to this is Hendriks

(1990), who uses spectral series to approximate density functions on manifolds,

however he assumes the manifold is known a priori, and does not deal with high-

dimensional problems.

In this work we will show how spectral methods can be efficiently used for esti-

mating functions in high-dimensional domains without going through dimension

reduction.

1.2 Thesis Structure

In Chapter 2, we first briefly review traditional series methods, and then discuss

spectral bases. We also explain why they are good candidates for approximating

functions defined on high-dimensional sample spaces. In each of the subsequent
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chapters, we describe the details of how such bases can be used for the following

tasks:

Chapter 3 : Estimation of a regression function

Chapter 4 : Estimation of a conditional density in a regression setting

Chapter 5 : Estimation of the ratio between two probability densities functions

Chapter 6 : Estimation of a likelihood function

We present comparisons with standard methods, as well as rates of convergence.

We then show our main application in Chapter 7, where we use our conditional

density estimator for photometric redshift prediction in the Sloan Digital Sky Sur-

vey data (Aihara et al. 2011), an important problem in cosmology. In particular, we

discuss how selection bias can be taken into account in this task. Final remarks

and some ideas for future work are in Chapter 8. Proofs of selected theorems are

shown in Appendices A and B.





2

O V E RV I E W O F T H E S P E C T R A L S E R I E S M E T H O D

We begin this chapter by reviewing traditional orthogonal series methods. Such

methods make use of Fourier-like basis, which are well suited for low-dimensional

problems. Then, we introduce spectral bases and describe some of their advantages

over standard bases in high-dimensional problems.

2.1 Traditional Orthogonal Series Methods

Let X be a random vector defined over a domain X ⊆ Rd, and suppose we are

interested in approximating an unknown function

g : X −→ R

x −→ g(x)

based on an i.i.d. sample X1, . . . , Xn of X. An example of a function of interest is

the probability density function (p.d.f.) of the random vector X, g(x) := f(x). The

function g can also be the regression of a random variable Y ∈ R on the covariates

x ∈ X, g(x) := E[Y|x]. Other examples of such functions are given in the subsequent

chapters.

9
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The idea of traditional orthogonal series methods is to expand g in terms of an

orthonormal basis function
{
ψj(x)

}
j∈N

of L2(X).1 That is, the method consists in

first writing

g(x) =
∑
j∈N

βjψj(x) (2.1)

and then estimating the coefficients
{
βj
}
j

based on the data. The details change

according the function one is approximating and the data that are available. As an

example, if g is the p.d.f. of X, f(x), we have

βj = 〈g,ψj〉 =
∫
g(x)ψj(x)dx =

∫
ψj(x)f(x)dx = E

[
ψj(X)

]
,

which motivates the estimator

β̂j :=
1

n

n∑
k=1

ψj(xk)

Hence, a simple estimator of the p.d.f. is given by

f̂(x) =
J∑
j=1

β̂jψj(x),

where the truncation point J is typically chosen so as to control the bias/vari-

ance tradeoff. Because
{
ψj
}
j

is typically chosen so as to have lower-order terms

smoother than higher-order terms (see Figure 2.1), smooth functions generally re-

quire a small value of J.

If d = 1, a popular choice for the basis
{
ψj
}
j

is the Fourier basis:
ψ1(x) := 1

ψ2j(x) :=
√
2 sin (2πjx), j = 1, 2, . . .

ψ2j+1(x) :=
√
2 cos (2πjx), j = 1, 2, . . .

1 We assume g ∈ L2(X). Also, notice that orthonormality in traditional orthogonal series methods is

with respect to the Lebesgue measure:∫
X
ψi(x)ψj(x)dx = δi,j.
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Figure 2.1: Some elements of a Fourier basis. Lower order terms are smoother

than higher order terms. They are good candidates for approximating

smooth functions in one dimension.

If d > 1,
{
ψj(x)

}
j

is typically built using d tensor products for each of the coordi-

nates of x. For instance, if d = 2, the tensor products basis is

{
ψi,j(x) = ψi(x1)ψj(x2) : i, j ∈N

}
,

where x = (x1, x2), and {ψi(x1)}i and
{
ψj(x2)

}
j

are bases for functions in L2(R).

This is a basis for L2(R2) (Wasserman 2006). We refer the reader to Efromovich

(1999) for a comprehensive account of orthogonal series methods.

Orthogonal series methods present several advantages over other nonparametric

estimators. For instance, they are usually easy and fast to implement, and addition-

ally offer a compression of the data in terms of a few Fourier coefficients. However,

there is currently no way of extending them to higher dimensions. This is because

tensor products quickly become computationally intractable even for as few as 10

covariates. Moreover, traditional bases do not always capture the complexity of

such data which, despite their apparent high dimensionality, are often highly re-

dundant with a low intrinsic dimensionality. In the next section we show a family

of bases that overcomes these issues, the spectral bases2.

2 These are often called eigenbases in the literature.
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2.2 The Spectral Series Method

We start by describing how to build a spectral basis. Our starting point is K(x, y),

a Mercer kernel that measures the similarity between samples x and y. That is, K :

X×X −→ R is bounded, symmetric, and positive definite3 function. An example

is the Gaussian kernel,

K(x, y) = exp
(
−d2(x, y)

4ε

)
,

where d(·, ·) is the Euclidean distance in Rd and ε > 0 is a user-chosen bandwidth;

see Schölkopf and Smola (2001) for other examples. For now we assume K is fixed;

in the subsequent chapter we describe some advantages of specific kernels, as well

as methods for choosing tuning parameters such as the bandwidth ε.

Let P(x) be the distribution of the random variable X. As is standard in the

spectral methods literature (e.g, Shi et al. 2009), we define the following integral

operator

K : L2(X,P) −→ L2(X,P) (2.2)

K(g)(x) =
∫
X

K(x, y)g(y)dP(y)

The operator K has a countable number of eigenfunctions
{
ψj
}
j∈N

with respective

eigenvalues λ1 > λ2 > . . . > 0 (Minh et al. 2006).

Definition 2.1. We refer to the eigenfunctions
{
ψj
}
j∈N

of the kernel operator in

Equation 2.2 as a spectral basis.

These eigenfunctions form an orthonormal basis of L2(X,P) (Minh 2010). Hence,

we can expand any function in L2(X,P) into them. We propose to use
{
ψj
}
j

as a

basis to approximate functions of x.

There are two main reasons why spectral bases are ideal candidates for approx-

imating smooth functions of x in high dimensions:

3 i.e., Matrix (2.3) is positive definite ∀n ∈N and ∀x1, . . . , xn ∈ X.
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1. The eigenfunctions are adapted to the intrinsic geometry of the data. More pre-

cisely, they are concentrated around high-density regions, and, in the case

the domain X is a submanifold of Rd (where d may be large), the bases be-

have like a Fourier basis adapted to the intrinsic geometry of the data, where

lower-order terms are smoother than higher-order terms.4 As an example,

in Figure 2.2 we show the eigenfunctions of the kernel operator when the

domain of the data is a submanifold (a spiral) of R2. Compare it to Figure

2.1; the basis behaves like a Fourier basis along the direction of the spiral. It

follows that if g(x) is smooth relative to P, then we only need a few eigen-

functions to approximate it. As we will show, the adaptation of the basis

yields convergence rates that depend only on the intrinsic dimensionality of

the data, instead of the potentially larger ambient dimensionality.

2. Unlike bases used in traditional series methods, the eigenfunctions are or-

thogonal with respect to P(x), the underlying data distribution, as opposed to

the Lebesgue measure of the ambient space (Bengio et al. 2004). That is,∫
X

ψi(x)ψj(x)dP(x) = δi,j.

We will see that for many problems this leads to faster estimators of the

expansion coefficients of Equation 2.1. Moreover, there is no need for using

tensor products in high dimensions, and thus our basis is computationally

more efficient than traditional bases from Section 2.1.

We will also see that in many problems this framework has the advantage of

allowing a natural extension to semi-supervised learning settings where, in addition

to the labeled sample, we also observe an unlabeled sample. Moreover, the eigen-

functions can additionally be used for data visualization.

4 This is because Euclidean distance is locally the same as geodesic distance; see, e.g., Shi et al. 2009

for a derivation.
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Figure 2.2: Level sets of the top eigenfunctions of the Gaussian kernel operator

when the domain of the data x = (x,y) is on a spiral. The eigenfunctions

form a Fourier-like basis adapted to the geometry of the data, and are

well-suited for approximating smooth functions of x on this domain.

Compare this figure with Figure 2.1.

Remark: The operator from Equation 2.2 is implicitly used in Kernel Principal

Component Analysis (Schölkopf et al.). Hence, from here on, we denote it as the

Kernel PCA operator. Notice, however, that we do not use it with the goal of

performing dimension reduction.

2.2.1 Estimating the Basis

As P(x) is unknown, we need to estimate
{
ψj
}
j
. This can be done by first com-

puting the Gram Matrix

G =



K(x1, x1) K(x1, x2) · · · K(x1, xn)

K(x2, x1) K(x2, x2) · · · K(x2, xn)
...

...
. . .

...

K(xn, x1) K(xn, x2) · · · K(xn, xn)


(2.3)
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Let

ψ̃j :=
(
ψ̃j(x1), . . . , ψ̃j(xn)

)
be the j-th eigenvector of Matrix 2.3, and let l̂j be its associated eigenvalue, where

we sort the eigenvectors by decreasing order of eigenvalues, and normalize them

such that
∑n
k=1 ψ̃

2
j (xk) = 1. A consistent estimator of ψj is

ψ̂j(x) =
√
n

l̂j

n∑
k=1

ψ̃j(xk)K(x, xk). (2.4)

This estimator is the Nyström extension of the eigenvector ψ̃j to out-of-sample

values x (Bengio et al. 2004; Drineas and Mahoney 2005).

2.2.2 Scalability

A naive implementation of the eigendecomposition of the Gram matrix, G, has

computational time O
(
n3
)
. However, it is possible to speed it up, and also make it

more memory-efficient. These make it possible to scale spectral series estimators

to larger datasets.

A simple approach for fast approximate eigendecomposition— named Random-

ized SVD — was proposed in Halko et al. (2011). We summarize it in Algorithm 1

for the case of a Gram matrix. This method leads to considerably faster solutions

when J, the number of desired eigenvalues, is much smaller than n (in this case,

it is roughly O
(
n2
)
); moreover, as we will see in Chapter 4, in general there is no

substantial decrease in statistical performance.

It is also possible to make the algorithm memory-efficient by inducing sparsity

on the Gram matrix. This can be achieved via thresholding, i.e., by assigning a

value 0 to all entries with K(xi, xj) smaller than a small user-chosen ξ > 0. If

one uses local kernels (e.g., the Gaussian kernel), samples that are far from each

other will have a small K(xi, xj), and hence Matrix (2.3) will be very sparse after

thresholding. This allows G to be stored using less memory. Sparsity can also be

used to make the eigendecomposition step even faster. Although we do not explore
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Algorithm 1 Randomized Singular Value Decomposition (SVD)
Input: n×n Gram Matrix G, scalars J, p and q.

. The default input values are typically p = 10 and q = 1

Output: Eigenvectors U and eigenvalues Λ

1: generate Ω, a n× (J + p) Gaussian matrix with components of mean 0 and

variance 1

2: let Z = GΩ, Y = Gq−1Z

3: compute an orthonormal matrix Q via QR decomposition on Y

4: compute the SVD of QtZ(QtΩ)−1 = UΣUt

5: return U and Λ =diag(Σ)

this here, we refer the reader to Halko et al. (2011) for further improvements, such

as exploitation of multi-processor architectures.

2.2.3 Connection to Dimension Reduction Methods

The eigenfunctions
{
ψj
}
j

have a dual interpretation:

1. They define new coordinates of the data which are primarily useful for man-

ifold learning, data visualization, and nonlinear dimensionality reduction.

That is, it transforms the data according to a so-called “eigenmap”

x 7→ (ψ1(x),ψ2(x), . . . ,ψJ(x)).

The eigenmap can be used for data visualization and manifold learning.

More generally , if J < d, then we are effectively reducing the dimension-

ality of the problem by mapping the data from Rd to RJ.

2. They form a Hilbert basis for functions on the data and hence are a means to

nonparametric curve estimation via the classical series method.

There is a large body of work addressing the first perspective; see, e.g., Lapla-

cian maps (Belkin and Niyogi 2003), Hessian maps (Donoho and Grimes 2003),

Diffusion Maps (Coifman et al. 2005), Euclidean Commute Time maps (Saerens
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et al. 2004), and Kernel Principal Component Analysis (Schölkopf et al. 1997). In

this work, we are mainly concerned with the second view. We will see that in some

specific problems there is an equivalence between the first and second perspective,

although this is not the case in general.

2.2.4 Variations of the Kernel Operator

Several variants of the operator from Equation (2.2) can be defined. For example,

it is usual to work with non-symmetric kernels in spectral methods literature (e.g.,

Lee and Wasserman 2010). Such operators also yield interesting bases functions.

In Chapters 3 and 4 we will explore one of these, namely the diffusion operator. We

will see that, although in our experiments bases derived from the diffusion opera-

tor lead to similar performance to those based on Equation (2.2), they have better

understood theoretical properties, which in turn yield more interesting bounds.

More precisely, the limit for the bandwidth ε → 0 is well-defined. In particular,

there is a series of works on the convergence of the graph Laplacian to the Laplace-

Beltrami operator on Riemannian manifolds (Coifman and Lafon 2006; Belkin and

Niyogi 2005; Hein et al. 2005; Singer 2006; Giné and Koltchinskii 2006). As Fourier

functions originate from solving a Laplace eigenvalue problem on a bounded do-

main, the eigenfunctions of the diffusion operator can be seen as a generalization

of Fourier series to manifolds. This makes the diffusion kernel with decreasing

bandwidth especially appealing. As we shall see in Section 3.4.1, the connection

to the Laplace operator also implies a direct link between Sobolev differentiability

and sparsity.

For the diffusion operator, we assume the kernel K is a local, radially symmetric

function

Kε(x, y) = g
(
d(x, y)/

√
ε
)

,
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such that the elements Kε(x, y) are positive and bounded for all x,y ∈ X. We use

the notation Kε to emphasize the dependence of K on the kernel bandwidth. The

first step is to renormalize the kernel according to

aε(x, y) =
Kε(x, y)
pε(x)

,

where pε(x) =
∫
Kε(x, y)dP(y). We refer to aε(x, y) as the diffusion kernel (Meila

and Shi 2001). As Lee and Wasserman (2010), we define the “diffusion operator”

Aε according to

Aε(h)(x) =
∫
X

aε(x, y)h(y)dP(y). (2.5)

The operator Aε has a discrete set of non-negative eigenvalues λε,0 = 1 > λε,1 >

. . . > 0 with associated eigenfunctions (ψε,j)j. The eigenfunctions are orthogonal

with respect to the weighted L2 inner product

〈f,g〉ε =

∫
X

f(x)g(x)dSε(x),

where

Sε(A) =

∫
A pε(x)dP(x)∫
pε(x)dP(x)

can be interpreted as a smoothed version of P. The density of Sε with respect to P

is sε(x) =
pε(x)∫
pε(y)P(y) .

Remark: It can be shown that the first eigenfunction of the diffusion operator

is constant. Because of this, we call it “trivial eigenfunction”, and denote it by

ψ0(x) ≡ 1.

2.2.4.1 Estimating the Diffusion Basis

The ideas used to estimate the diffusion basis are similar to those used for esti-

mating quantities associated to the Kernel PCA operator from Equation (2.2). More

precisely, given x1, . . . , xn, use the kernel Kε to construct a row-stochastic matrix

Aε, where

Aε(i, j) =
Kε(xi, xj)∑n
l=1 Kε(xi, xl)

(2.6)
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for i, j = 1, . . . ,n. Let p̂ε(x) = 1
n

∑n
j=1 Kε(x, xj). The stationary measure Sε can be

estimated by

ŝε(xi) =
p̂ε(xi)∑n
j=1 p̂ε(xj)

. (2.7)

To estimate the eigenfunctions ψε,1, . . . ,ψε,J of the continuous diffusion operator

Aε in Eq. 2.5, we first calculate the eigenvalues λA
ε,1, . . . , λA

ε,J and the associated (or-

thogonal) eigenvectors ψ̃A
ε,1, . . . , ψ̃A

ε,J of the symmetrized kernel matrix Ãε, where

Ãε(i, j) =
Kε(xi, xj)√∑

l

Kε(xi, xl)
√∑

l

Kε(xl, xj)
. (2.8)

We normalize the eigenvectors so that
1

n

n∑
i=1

ψ̃A
ε,j(i)ψ̃

A
ε,k(i) = δj,k, and define the

new vectors ψA
ε,j(i) = ψ̃

A
ε,j(i)/

√
ŝε(xi) for i = 1, . . . ,n and j = 1, . . . , J.

The n-dimensional vector ψA
ε,j can be regarded as estimates of ψε,j(x) at the

observed values x1, . . . , xn. As in the case of the Kernel PCA operator, we estimate

the function ψε,j(x) at values of x not corresponding to one of the xi’s using Nys-

tröm method. The idea is to first rearrange the eigenfunction-eigenvalue equation

λε,jψε,j = Aεψε,j as

ψε,j(x) =
Aεψε,j

λε,j
=

1

λε,j

∫
Kε(x, y)∫

Kε(x, y)dP(y)
ψε,j(y)dP(y),

and use the kernel-smoothed estimate

ψ̂ε,j(x) =
1

λ̂ε,j

n∑
i=1

Kε(x, xi)∑n
l=1 Kε(x, xl)

ψ̂ε,j(xi). (2.9)

for λ̂ε,j > 0.

In the remaining of this thesis we describe in details how to use spectral series

to estimate certain functions of interest.
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R E G R E S S I O N E S T I M AT I O N

Estimating a regression curve E[Z|x] is a key problem in statistics. Therefore, this

is our starting point for illustrating the spectral series method.

3.1 Introduction

In high-dimensional regression estimation, much research has revolved around

variable selection and the problem of recovering a sparse coefficient vector in

the original coordinate system. That is, low-dimensional structure is apparent in

the original space. Such approaches include, for example, lasso-type regulariza-

tion (Tibshirani 1996), the Dantzig selector (Candès and Tao 2005) and RODEO (Laf-

ferty and Wasserman 2008). These methods are widely applicable to a range of dif-

ferent situations, but are known to suffer from collinearity or near-collinearity of

predictors. This has prompted work on extensions, e.g., the grouped lasso (Yuan

and Lin 2006) and elastic net (Zou and Hastie 2005), that take groupings of co-

variates into account. Similarly, sparse additive models (Ravikumar et al. 2009) can

incorporate lower-order interactions between covariates but, like lasso-type estima-

tors, they are not directly applicable to the type of collinearities observed in, e.g.,

images and spectra.

At the same time, there has been a growing interest in statistical methods that ex-

plicitly consider (sparse) geometric structure in the data themselves. Most traditional

dimension-reducing regression techniques, e.g., principal component regression

23
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(PCR; Jolliffe 2002) and partial least squares (PLS; Wold et al. 2001), are based on

linear data transformations and enforce sparsity of the regression in a rotated space.

More recently, Bickel and Li (2007), Aswani et al. (2011) and Cheng and Wu (2013)

have studied local regression methods on non-linear manifolds. In Aswani et al.

(2011), the authors propose a geometry-based regularization scheme designed for

a setting where the predictors lie on a lower-dimensional nonlinear manifold. Un-

der the manifold assumption, their approach is to first use a local covariance matrix

to estimate the manifold at a point, and then penalize regression coefficients per-

pendicular to the manifold direction. Similarly, Cheng and Wu (2013) propose to

first estimate the dimensionality of the manifold, and then perform a local linear

regression on an estimated tangent plane.

In this chapter we will show how spectral series can be effectively used to esti-

mate a regression function in high dimensions. Figure 3.1, for example, shows a

2D visualization of the Isomap face data using the eigenvectors of the Gaussian

kernel as coordinates. Assume we want to estimate the pose of the faces. How

does one solve a regression problem where the predictors are entire images? Tra-

ditional methods do not cope well with this task while our approach can use

high-dimensional complex data objects as predictors without a prior dimension

reduction step; we will return to the face pose estimation problem in Section 3.5.1.

This chapter is organized as follows. In Section 3.2, we describe the construction

of the spectral series method for regression estimation. Section 3.3 discusses the

connection to related work in machine learning and statistics. In Section 3.4, we

provide some theoretical guarantees of the basis method. Finally, in Section 3.5,

we compare the performance of the series estimator with other nonparametric

estimators for three high-dimensional data sets with, respectively, images of faces,

galaxy spectra, and images of galaxies.
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Figure 3.1: Embedding of the Isomap face data using the first two non-trivial eigen-

vectors of the Gaussian diffusion kernel.

3.2 Methodology

Let (Z1, X1), . . . , (Zn, Xn) denote an i.i.d. sample, where Xi ∈ X ⊆ Rd, and

Zi ∈ R. Our goal is to estimate the regression function

r(x) = E(Z|X = x).

We now show how the eigenfunctions from both kernel PCA and the diffusion

operators (Eqs. 2.2 and 2.5, respectively) can be used to implement the spectral

series estimator.

3.2.1 Kernel PCA Operator

Assume a kernel K is fixed, and let {ψj}j∈N be the orthonormal basis of the

operator of Equation (2.2). The expansion of the regression function r onto this

basis is given by

r(x) =
∑
j>1

βjψj(x),
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where

βj =

∫
X

ψj(x)r(x)dP(x) =
∫
X

ψj(x)E[Z|x]dP(x) = E[Zψj(X)]

Notice that the orthogonality of the spectral basis with respect to P(x) is the key

for βj to be simply E[Zψj(X)].

The spectral series estimator of the regression function is therefore given by

r̂(x) =
J∑
j=1

β̂jψ̂j(x), (3.1)

where ψ̂j’s are estimated as in Section 2.2.1, and

β̂j =
1

n

n∑
k=1

zkψ̂j(xk).

We choose J according to Section 3.2.3.

3.2.2 Diffusion Operator

If one uses the basis (ψε,i)i given by the diffusion operator (Eq. 2.5)1, the expan-

sion is instead given by

r(x) =
∑
j>0

βε,jψε,j(x),

where

βε,j =

∫
X

ψε,j(x)r(x)dSε(x) =
∫
X

ψε,j(x)E[Z|x]sε(x)dP(x) = E[Zψε,j(X)s(X)].

Hence, our estimator is

r̂(x) =
J∑
j=0

β̂jψ̂j(x), (3.2)

where

β̂ε,j =
1

n

n∑
i=1

Ziψ̂ε,j(xi)ŝε(xi), (3.3)

where ψ̂ε,j and ŝε were discussed in Section 2.2.4.1.

1 Recall that for the diffusion basis we are especially interested in the case ε −→ 0, and hence empha-

size the dependence of the kernel on the bandwidth ε.
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Semi-Supervised Learning. In a semi-supervised learning (SSL) setting, where

we have additional unlabeled data

xn+1, . . . , xn+m ∼ P,

we can improve our estimates of λε,j, ψε,j and Sε by incorporating both labeled

and unlabeled examples into the kernel matrix Aε. See e.g. Zhou and Srebro (2011)

for SSL with Laplacian eigenmaps in the limit of infinite unlabeled data, i.e., when

m→∞. This can also be done for the estimator based on the Kernel PCA operator.

Although in this chapter we focus on the estimator of Equation 3.2, i.e., the

estimator based on the diffusion basis, much of the discussion also applies to the

estimator based on the kernel PCA basis, Eq. 3.1. Moreover, in the experiments we

implement both methods.

3.2.3 Loss Function and Tuning of Parameters

To measure the performance of an estimator r̂(x), we consider the L2 loss func-

tion

L(r, r̂) =
∫
X

(r(x) − r̂(x))2 dP(x). (3.4)

We split the data into training, validation and test sets. For each choice of ε and a

sufficiently large constant Jmax, we use the training set to estimate the eigenvectors

ψε,1, . . . , ψε,Jmax and the expansion coefficients βε,0, . . . ,βε,Jmax . We then use the

validation set (x ′1, z ′1), . . . , (x
′
n, z ′n ′) to minimize the estimated loss

L̂(r, r̂) =
1

n ′

n ′∑
i=1

(
z ′i − r̂(x

′
i)
)2

=
1

n ′

n ′∑
i=1

z ′i − J∑
j=0

β̂ε,jψ̂ε,j(x ′i)

2

for different values of J. The last computation is very fast. Due to orthogonality,

we need not recompute β̂ε,j and ψ̂ε,j for J 6 Jmax. We choose the model with the

lowest estimated loss on the validation set.
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3.3 Connection to Other Work

3.3.1 Linear Regression and Weighted Least Squares

Consider the data transformation y = Ψ(x), where Ψ = (ψ1, . . . ,ψJ) are the

first J eigenvectors of the diffusion operator Aε. Our series model can be viewed

as a (weighted) linear regression in the transformed data (Z1, y1), . . . , (Zn, yn). By

increasing J, the dimension of the feature space, we achieve more flexible (non-

parametric) representations. Decreasing J adds more structure to the regression as

dictated by the eigenstructure of the data.

Equation 3.3 can be viewed as a weighted least squares (WLS) solution to the

linear regression of Z in y. Define the n× (J+ 1) matrix of predictors,

Y =



1 ψ1(x1) · · · ψJ(x1)

1 ψ1(x2) · · · ψJ(x2)
...

...
. . .

...

1 ψ1(xn) · · · ψJ(xn)


, (3.5)

and the weight matrix

W =



s(x1) 0 · · · 0

0 s(x2) · · · 0

...
...

. . .
...

0 0 · · · s(xn)


, (3.6)

where Ψj and s are estimated from data (Equations 2.7 and 2.9). Let Z = (Z1, . . . ,Zn)T ,

e = (ε1, . . . , εn)T and β = (β1, . . . ,βJ)T . The basis model assumes that Z = Yβ+ e.

By minimizing the weighted residual sum of squares

RSS(β) = (Z− Yβ)TW(Y − Yβ), (3.7)

which puts more weight on observations in high-density regions, we arrive at the

WLS estimator

β̂ = (YTWY)−1(YTWZ) =
1

n
YTWZ. (3.8)
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This expression is equivalent to Equation 3.3. Because of the orthogonality property

YTWY = nI, model search and model selection are feasible even for complex

models with very large J. This is in clear contrast with standard multiple regression

where the β̂j estimates need to be recomputed for each model, and the inputs

(columns of the design matrix Y) may be linearly dependent.

Remarks:

1. It is straightforward to incorporate heteroscedastic errors into the above

framework. For a regression model Zi = r(xi) + σ(xi)εi, where εi are iid

realizations of a random variable ε with zero mean and unit variance, and

σ(x) is a non-negative function, simply perform an orthogonal series expan-

sion of the rescaled regression function g(x) = r(x)/σ(x).

2. If one uses the Kernel PCA operator (Eq. 2.2) to derive the basis, then per-

forming an unweighted linear regression of Z on the new coordinates y is

equivalent to computing the spectral series estimator of Eq. 3.1.

3.3.2 Kernel Machine Learning and Regularization in RKHS

In kernel machine learning (Schölkopf et al. 1997; Cucker and Zhou 2007), it is

common to consider the variational problem

min
r∈HK

[
1

n

n∑
i=1

L(zi, r(xi)) + γ‖r‖2HK

]
, (3.9)

where L(zi, r(xi)) is a convex loss function, γ > 0 is a penalty parameter, and

HK is the Reproducing Kernel Hilbert Space (RKHS) associated with a symmet-

ric positive semi-definite kernel K. 2 Penalizing the RKHS norm ‖ · ‖HK
imposes

smoothness conditions on possible solutions. Now suppose that

K(x, y) =
∞∑
j=0

λjφj(x)φj(y),

2 To every continuous, symmetric, and positive semi-definite kernel K : X× X → R is associated a

unique RKHS HK (Aronszajn 1950). This RKHS is defined to be the closure of the linear span of

the set of functions {K(x, ·) : x ∈ X} with the inner product satisfying the reproducing property

〈K(x, ·), r〉HK = r(x) for all x ∈ X, r ∈ HK.
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where the RKHS inner product is related to the L2-inner product according to

〈φi,φj〉Hk
= 1
λi
〈φi,φj〉L2(X,P) = 1

λi
δi,j. Eq. 3.9 is then equivalent to considering

eigen-expansions

r(x) =
∞∑
j=0

βjφj(x),

and seeking solutions to minr∈Br
1
n

∑n
i=1 L(zi, r(xi)), where the hypothesis space

Br = {r ∈ HK : ‖r‖HK
6 r} (3.10)

is a ball of the RKHS Hk with radius r, and the RKHS norm is given by ‖r‖HK
=(∑∞

j=0

β2j
λj

)1/2
.

The above setting is similar to ours, but there are algorithmic differences, as

well as differences in the interpretation of the regression estimator. For Support

Vector Machines (Steinwart and Christmann 2008) and other kernel-based regu-

larization methods (such as splines, ridge regression, and radial basis functions),

eigen-expansions are never explicitly computed. Instead, these methods rely on

the classical Representer Theorem (Wahba 1990) which states that the solution to

Eq. 3.9 is a finite expansion of the form r(x) =
∑n
i=1 αik(xi, x). The functions

k(xi, ·) themselves are often referred to as basis functions. For example, for a Gaus-

sian kernel, these are the so-called Gaussian radial basis functions. Because of the

finite expansion, the original infinite-dimensional variational problem is reduced

to a finite-dimensional optimization of the coefficients αi. These coefficients have

to be recomputed for each choice of the penalty parameter γ. This can make cross-

validation approaches cumbersome. In our spectral series approach, we take ad-

vantage of the orthogonality of the basis for fast model selection and computation

of the βj parameters. As in spectral clustering methods, we explicitly compute the

eigenvectors of the kernel and use them to analyze the data.

Finally, another difference is that while we use a projection (i.e., a basis subset

selection) method to choose which eigenfunctions to use, the regularization in

Eq. 3.9 differentially shrinks contributions from higher-order terms with small λj

values.



3.4 Theory 31

3.4 Theory

Here we investigate how the performance of a spectral series estimator derived

from the diffusion operator depends on the choice of the smoothing parameters

J and ε. We also address questions such as when the basis representation r̂(x) in

Eq. 3.2 is sparse, and whether our method adapts to the intrinsic dimensionality

of the data.

Consider the loss function in Equation 3.4. Using the same notation as before,

let

r(x) =
∞∑
j=0

βε,jψε,j(x), rε,J(x) =
∑J
j=0 βε,jψε,j(x),

r̂ε,J(x) =
∑J
j=0 β̂ε,jψ̂ε,j(x),

We write

|r(x) − r̂ε,J(x)|2 6 2|r(x) − rε,J(x)|2 + 2|rε,J(x) − r̂ε,J(x)|2,

and refer to the two terms as “bias” and “variance”. Hence, define

Lbias =

∫
X

|r(x) − rε,J(x)|2dP(x),

and

Lvar =

∫
X

|rε,J(x) − r̂ε,J(x)|2dP(x).

In what follows, we bound the two components under the following assump-

tions:

(A1) P has compact support X and bounded density 0 < a 6 p(x) 6 b < ∞,

∀x ∈ X.

(A2) The weights are positive and bounded; that is, ∀x, y ∈ X,

0 < m 6 Kε(x, y) 6M,

where m and M are constants that do not depend on ε.

(A3) The psd operator Aε has nondegenerate eigenvalues; i.e.,

1 ≡ λε,0 > λε,1 > λε,2 > . . . λε,J > 0.
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(A4) ∀0 6 j 6 J and X ∼ P, there ∃ some constant C < ∞ (not depending on n)

such that

E
[
|ϕ̂ε,j(X) −ϕε,j(X)|2

]
< C,

where ϕε,j(x) = ψε,j(x)sε(x) and ϕ̂ε,j(x) = ψ̂ε,j(x)ŝε(x).

Without loss of generality, we assume that the eigenfunctions ψε,j are estimated

using an unlabeled sample x̃1, . . . , x̃n that is drawn independently from the data

used to estimate the coefficients βε,j. This is to simplify the proofs and can always

be achieved by splitting the data in two sets.

3.4.1 Bias

The approximation error of the regression depends on the smoothness of r rela-

tive to P. To measure the smoothness of a given function g(x) (not necessarily the

regression function), we first define the operator

Gε =
Aε − I

ε
, (3.11)

where I is the identity. The operator Gε has the same eigenvectors ψε,j as the

differential operator Aε. Its eigenvalues are given by −ν2ε,j =
λε,j−1
ε , where λε,j

are the eigenvalues of Aε. Define the functional

Jε(g) = −〈Gεg,g〉ε (3.12)

which maps a function g ∈ L2(X,P) into a non-negative real number. For small

ε, Jε(g) measures the variability of the function g with respect to the distribu-

tion P. The expression is a variation of the graph Laplacian regularizers popular

in semi-supervised learning (Zhu et al. 2003). In fact, a Taylor expansion yields

Gεg = −4g+ ∇p
p
·∇g+O(ε) where∇ is the gradient operator and4 = −

d∑
j=1

∂2

∂x2j

is the psd Laplace operator in Rd. In kernel regression smoothing, the extra term
∇p
p
· ∇g is considered an undesirable extra bias, called design bias. In classical re-

gression, it is removed by using local linear smoothing (Fan 1993), which is asymp-

totically equivalent to replacing the original kernel Kε(x, y) by the bias-corrected

kernel K∗ε(x, y) = Kε(x,y)
pε(x)pε(y) (Coifman and Lafon 2006).



3.4 Theory 33

The following result bounds the approximation error for an orthogonal series

expansion of g. The bound is consistent with Theorem 2 in Zhou and Srebro (2011),

which applies to the more restrictive setting of SSL with infinite unlabeled data and

ε→ 0. Our result holds for all ε and J and does not assume unlimited data.

Proposition 3.1. For g ∈ L2(X,P),∫
X

|g(x) − gε,J(x)|2dSε(x) 6
Jε(g)

ν2ε,J+1
(3.13)

Lbias = O

(
Jε(g)

ν2ε,J+1

)
,

where −ν2ε,J+1 is the (J+ 1)th eigenvalue of Gε, and gε,J is the projection of g onto the J

first elements of the eigenbasis.

Smoothness and Sparsity. In the limit ε→ 0, we have several interesting results,

including a generalization of the classical connection between Sobolev differentia-

bility and the error decay of Fourier approximations (Mallat 2009, Section 9.1.2) to

a setting with adaptive bases and high-dimensional data. We denote the quantities

derived from the bias-corrected kernel K∗ε by A∗ε, G∗ε, J∗ε and so forth.

Definition 3.1. (Smoothness relative to P) A function g is smooth relative to P if∫
X

‖∇g(x)‖2dS(x) 6 c2 <∞,

where S(A) =
∫
A p(x)dP(x)∫
p(x)dP(x) is the stationary distribution of the diffusion operator as ε→ 0.

The smaller the value of c, the smoother the function.

The following Lemma shows how smoothness relative to P relates to Proposition

3.1.

Lemma 3.1. For functions g ∈ C3(X) whose gradients vanish at the boundary,

lim
ε→0

J∗ε(g) =

∫
X

‖∇g(x)‖2dS(x).

This result is similar to the convergence of the (un-normalized) graph Laplacian

regularizer to the density-dependent smoothness functional
∫
X

‖∇g(x)‖2p2(x)dx (Bous-

quet et al. 2003).
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In what follows, we show that smoothness relative to P (Definition 3.1) and spar-

sity in the eigenbasis of the diffusion operator (Definition 3.2 below) are really the

same thing. Furthermore, we link smoothness and sparsity to the rate of the error

decay of the eigenbasis approximation.

Definition 3.2. (Sparsity in B) A set of real numbers θ1, θ2, . . . lies in a Sobolev el-

lipsoid Θ(s, c) if
∑∞
j=1 j

2sθ2(j) 6 c2 for some number s > 1/2. For a given basis

B = {ψ1,ψ2, . . .}, let

WB(s, c) =

g =
∑
j

βjψj : β1,β2, . . . ∈ Θ(s, c)


where s > 1/2. Functions in WB(s, c) are sparse in B. The larger the value of s, the

sparser the representation.

Theorem 3.1. Assume that B = {ψ1,ψ2, . . .} are the eigenfunctions of 4 with eigenval-

ues ν2j = O(j2s) for some s > 1/23. Let gJ(x) =
∑
j6J βjψj(x). Then, the following two

statements are equivalent:

1.
∫
X ‖∇g(x)‖

2dS(x) 6 c2 (smoothness relative to P)

2. g ∈WB(s, c) (sparsity in B).

Furthermore, sparsity in B (or smoothness relative to P) implies∫
X

|g(x) − gJ(x)|2dS(x) = o
(
1

J2s

)
.

The rate s of the error decay depends on the dimension of the data. We will

address this issue in Section 3.4.3.

3.4.2 Variance

In Appendix A we show the following bound on the variance term.

3 Notice that by Proposition 3 from Coifman and Lafon (2006), ψε,j
ε−→0−→ ψj
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Proposition 3.2. For r ∈ L2(X,P), εn → 0, and nεd/2n / log(1/εn) → ∞, it holds

under Assumptions (A1)-(A4) and regularity conditions (see Appendix A) that

Lvar = J

(
OP

(
1

n

)
+OP

(
γ2n
∆2ε,J

))
.

where ∆ε,J = min06j6J(λε,j − λε,j+1), and γn =

√
log(1/εn)

nε
d/2
n

.

3.4.3 Total Loss

From Propositions 3.1 and 3.2, we have the following result:

Theorem 3.2. Let εn → 0 and nεd/2n / log(1/εn)→∞. Then, for r ∈ L2(X,P),

L(r, r̂) = O

(
Jε(r)

ν2ε,J+1

)
+ JOP

(
1

n

)
+ JOP

(
γ2n
∆2ε,J

)
, (3.14)

where Jε(r) = −〈Gεr, r〉ε, ν2ε,J+1 is the (J+ 1)th eigenvalue of −Gε, γn =

√
log(1/εn)

nε
d/2
n

,

and ∆ε,J = min06j6J(λε,j − λε,j+1).

Corollary 3.1. Assume that r ∈ C3b(X) and that the kernel K∗ε is corrected for bias. Then,

for εn → 0 and nεd/2n / log(1/εn)→∞,

L(r, r̂) =
J(r)O(1) +O(εn)

ν2J+1
+ JOP

(
1

n

)
+ JOP

(
γ2n
εn∆

2
J

)
, (3.15)

where ν2J+1 is the (J + 1)th eigenvalue of 4, J(r) =
∫
X ‖∇r(x)‖

2dS(x), and ∆J =

min06j6J(ν2j+1 − ν
2
j ).

Some remarks on the interpretation of these results: The first term in Equa-

tion 3.14 corresponds to the approximation error of the estimator and decays with

J. The second and third terms correspond to the variance. Note that the variance

term JOP
(
1
n

)
is the same as the variance of a traditional orthogonal series estima-

tor in one dimension; in d dimensions, the variance term for a traditional tensor

product basis is OP
(
1
n

)∏d
i=1 Ji where Ji is the number of components in the ith

direction (Efromovich 1999). By estimating the basis in our spectral series method,

we incur an additional variance term JOP

(
γ2n
εn∆

2
J

)
. 4

4 In a SSL setting, this extra estimation error vanishes in the limit of infinite unlabeled data.
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Assume r is smooth with respect to P. If we balance the two ε-terms in Equa-

tion 3.14, we get a bandwidth of εn � (1/n)2/(d+4). With this choice of εn and by

ignoring terms of lower order, the rate becomes

L(r, r̂) = O

(
J(r)

ν2J+1

)
+
J

∆2J
OP

(
logn
n

) 2
d+4

. (3.16)

Corollary 3.2. Suppose the support of the data is on a compact C∞ submanifold of Rd

with intrinsic dimension p. Under the assumptions of Theorem 3.2 and Corollary 3.1, and

assuming r is smooth with respect to P (recall Definition 3.1), we obtain the rate

L(r, r̂) = O
(

1

J2/p

)
+ J2(1−

1
p)OP

(
logn
n

) 2
p+4

.

It is then optimal to take J � (n/ logn)
1
p+4 , in which case the upper bound becomes(

logn
n

) 2
(p+4)p

.

We make the following observations:

1. Adaptiveness to Low-Dimensional Structure. If the data in Rd has intrinsic

dimension p� d, then the rate n−1/O(p2) above is a significant improvement

of the minimax rate n−1/O(d) for a nonparametric regressor in Rd.

2. Minimax Optimality. In a semi-supervised learning setting, the estimation

error of the basis vanishes in the limit of infinite unlabeled data. The loss

then reduces to

L(r, r̂) = O
(

1

J2/p

)
+ JOP

(
1

n

)
, (3.17)

which is minimized by taking J � np/(p+2). At the minimum, we achieve

the rate

n− 2
2+p ,

the minimax rate for a nonparametric estimator of Sobolev smoothness β = 1

in RD, where D = p. The latter result is also, up to a logarithmic term, in

agreement with Zhou and Srebro (2011).
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Finally, we note that although for simplicity we did not present bounds for the

regression estimator based on the kernel PCA operator, the rates we compute in

the next chapters for the problem of estimating other unknown functions can be

easily adapted to the regression case.

3.5 Applications

We illustrate the spectral series method on three prediction problems that in-

volve high-dimensional data and predictors with complex dependencies. We inves-

tigate how the performance depends on the choice of the kernel. We also provide

a comparison with classical kernel smoothing, regularization in RKHS, and some

state-of-the-art geometric methods for regression on manifolds. In all examples, we

tune parameters using the methodology from Section 3.2.3. After having chosen a

final model, we use the test set to estimate its prediction error on new data. We

also use this set to estimate the variability of the loss. We estimate the standard

error of L̂ to be s/
√
n, where s2 is the empirical variance of (zi − r̂(xi))2 for the

test data.

3.5.1 Estimating Pose Using Images of Faces

The first data set contains images of artificial faces from the Isomap database5

used in Tenenbaum et al. (2000). There are a total of 698 64× 64 gray-scale images

rendered with different orientation and lighting directions. We are interested in

estimating the horizontal left-right pose of each face given an image. Figure 3.1

shows an embedding of the data using the first two non-trivial eigenvectors of the

Gaussian diffusion kernel. We have included some sample images to illustrate that

the eigenvectors capture the variations in pose fairly well although this informa-

tion was not taken into account in the construction of the basis.

5 www.isomap.stanford.edu/datasets.html

www.isomap.stanford.edu/datasets.html
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We implement several regression estimators: As a baseline, we include the clas-

sical Nadaraya-Watson estimator (NW) with a Gaussian smoothing kernel, as well

as a nearest neighbors regression estimator (NN), known to automatically adapt to

the intrinsic dimension of the data if it lives on a submanifold of the original space

(Kpotufe 2011). For the spectral series method (series), we implement the Gaussian

kernel (radial) (via diffusion and kernel PCA basis) and polynomial kernels of de-

grees 1, 2 and 3 (poly, poly2, poly3). Note that the series approach with a first-order

polynomial is equivalent to a linear regression on eigenvectors computed with

PCA. We also implement the RKHS method in Section 3.3.2 with a squared-error

loss and different kernels (radial, poly1, poly2, poly3). For a squared-error loss, Equa-

tion 3.9 reduces to a infinite-dimensional, generalized ridge regression problem

(Hastie et al. 2001, Section 5.8.2); hence, we use the term kernel ridge regression

(KRR).

Furthermore, using the implementation6 by Aswani et al., we provide additional

comparison to several local regression and manifold regression methods: locOLS

is a local ordinary least squares, locRR is a local ridge regression, locEN is a lo-

cal elastic net, locPLS is a local partial least squares, locPCR is a local principal

components regression, NEDE is the nonparametric exterior derivative estimator,

NALEDE is the nonparametric adaptive lasso exterior derivative estimator, NEDEP

is the nonparametric exterior derivative estimator for the “large p, small n” case,

and NALEDEP is the nonparametric adaptive lasso exterior derivative estimator

for the “large p, small n” case. The last 4 regression estimators (NEDE, NALEDE,

NEDEP, NALEDP) pose the regression as a least-squares problem with a term that

penalizes for the regression vector lying in directions perpendicular to an esti-

mated manifold; see Aswani et al. (2011) for details. We also compute MALLER

(Cheng and Wu 2013), a local polynomial regression estimator designed to work

under a manifold assumption. We use the code provided by the authors7. Finally,

6 www.eecs.berkeley.edu/~aaswani/EDE_Code.zip

7 www.math.princeton.edu/~hauwu/regression.zip

www.eecs.berkeley.edu/~aaswani/EDE_Code.zip
www.math.princeton.edu/~hauwu/regression.zip
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we compute LPR, a standard local polynomial regression, which is known to auto-

matically adapt to the intrinsic dimension of the manifold (Bickel and Li 2007).

The locally linear and manifold regression methods are computationally inten-

sive in high dimensions. Hence, in Aswani et al. (2011), the authors first rescale

the images from 64 × 64 to 7 × 7 pixels in size, which reduces the number of

predictors from d = 4096 to d = 49. The covariates are normalized to have mean

0 and standard deviation 1. We use 50% of the data for training, 25% for valida-

tion and 25% for testing. Results of the regression are shown in Table 3.1. The

approaches that have best performance are series and KRR when using the Gaus-

sian kernel. Notice both the kernel PCA operator and the diffusion operator yields

very similar risks. The first-order polynomial kernel, i.e., a global principal compo-

nent regression, leads to worse performance than NW. Higher-order polynomial

kernels, the locally linear estimators and the manifold regression estimators (in

particular, NEDE) improve the NW result but series-radial and KRR-radial are still

the best choices in terms of computational as well as statistical performance.

3.5.2 Estimating Redshift Using SDSS Galaxy Spectra

Next we apply the formalism developed here to the problem of predicting red-

shift using spectra from the Sloan Digital Sky Survey (SDSS). Redshift is a quantity

related to how fast an object moves away from the observer. It plays a key role in as-

tronomy in determining the distances and ages of objects in the Universe, see more

details in Chapter 7. When given spectroscopic data, astronomers can typically es-

timate redshift with great precision using template fitting and cross-correlation

techniques. As we lack knowledge of the true redshift, we use SDSS estimates of

spectroscopic redshift (zSDSS) to train and test our estimators.

Our initial data sample consists of spectra that are classified as galaxies from ten

arbitrarily chosen spectroscopic plates of SDSS DR6
8. We preprocess and remove

spectra according to the three cuts described in Richards et al. (2009). The final

8 http://www.sdss.org/dr6/algorithms/redshift_type.html

http://www.sdss.org/dr6/algorithms/redshift_type.html
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sample consists of 2812 high-resolution galaxy spectra. The predictors are flux

measurements at 3501 different wavelengths, and the response is the SDSS redshift.

Table 3.1: Estimated loss for Isomap face data.

Method Loss (SE)

NW 1.71 (0.23)

NN 1.74 (0.21)

series-poly1 2.96 (0.40)

series-poly2 0.22 (0.04)

series-poly3 0.80 (0.22)

seriesDiff-radial 0.16 (0.04)

series-radial 0.16 (0.03)

KRR-poly1 2.95 (0.41)

KRR-poly2 0.19 (0.03)

KRR-poly3 0.59 (0.14)

KRR-radial 0.15 (0.04)

Method Loss (SE)

OLS 0.65 (0.17)

RR 0.46 (0.16)

EN 0.47 (0.16)

PLS 0.65 (0.21)

PCR 0.95 (0.20)

NEDE 0.44 (0.14)

NALEDE 0.46 (0.14)

NEDEP 0.81 (0.31)

NALEDEP 0.85 (0.33)

MALLER 0.24 (0.06)

LPR 0.37 (0.06)

For the regression task, we implement our spectral series method and Kernel

Ridge Regression with the Gaussian kernel, as well as first, second- and third-

order polynomial kernels. Because of the large number of variables (d = 3501), we

were not able to implement the computationally more intensive locally linear and

manifold regression estimators from Aswani et al. (2011), nor the local polynomial

regression. We use 50% of the data for training, 25% for validation and 25% for

testing. The results are summarized in Table 3.2. Figure 3.2 shows an embedding

of the SDSS galaxy spectra using the first three non-trivial eigenvectors of the

Gaussian diffusion kernel. The color codes for redshift.
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Figure 3.2: Embedding of a sample of SDSS galaxy spectra using the first three non-

trivial eigenvectors of the Gaussian diffusion kernel. The color codes for

redshift.

As before, the radial kernel yields the best performance and, as expected, the

series and the kernel ridge regression estimators are essentially equivalent in

terms of performance. Unlike the Isomap face application, a dimensionality re-

duction with PCA (series-poly1) improves upon the NW regression results. Us-

ing higher-order polynomials (e.g., series-poly2), however, does not improve the

results further. The reason is the high dimension of the problem. In Rp, the kernel

k(x, y) = (〈x, y〉+ 1)q has a total of M =
(
p+q
d

)
eigenfunctions that span the space

of polynomials of degree q. For p = 3501 and q = 1, we have 3506 eigenfunctions

already. Adding more eigenfunctions seems to only increase the variance of the

series estimator, even when chosen nonlinearly according to decreasing values of

|β̂j|
2, or when penalized by |β̂j|

2/λj as in KRR. Finally, we observe that MALLER

achieves similar statistical performance as series, however its computation time is

much larger: Series takes less than one minute on a 2.70GHz Intel Core i7-4800MQ

CPU, but MALLER takes ∼1 hour, one of the reasons being that the estimator has

to be recomputed for each testing point.
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Table 3.2: Estimated loss for redshift prediction using SDSS galaxy spectra.

Method Loss (SE) ×10−5

NW 11.73 (3.23)

NN 10.18 (2.01)

series-poly1 6.99 (0.65)

series-poly2 6.99 (0.66)

series-poly3 6.99 (0.66)

seriesDiff-radial 3.97 (0.51)

series-radial 4.26 (0.50)

KRR-poly 1 6.61 (0.65)

KRR-poly 2 6.62 (0.64)

KRR-poly 3 6.61 (0.64)

KRR-radial 4.29 (0.51)

MALLER 4.65 (0.8)

3.5.3 Galaxy Morphology Classification

Astronomers usually divide galaxies into different morphological groups that

capture their structure (Hubble 1926). Some of these include disks, spheroids, irreg-

ulars and mergers, see Figure 3.3 for some examples. An important question in

modern astronomy is how to automatically classify new galaxies into the several

different morphological groups. This is typically done using a labeled sample of

human-classified galaxies; see, e.g., Peng et al. (2002), Conselice (2003), Lotz et al.

(2004), and Gauci et al. (2010). More specifically, it is traditional to perform auto-

matic classification by extracting a small number of meaningful features from the

images. Several features have been proposed, see, e.g., Peng et al. (2002), Conselice

(2003), and Lotz et al. (2004). In particular, in Freeman et al. (2013), we develop
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statistics designed to detect non-regular galaxies, i.e., galaxies that are either irreg-

ulars or mergers.

(a) Spheroid (b) Disk (c) Irregular (d) Merger

Figure 3.3: Examples of galaxy morphologies. Source: ESA/Hubble.

Here we investigate how the series method performs in classifying galaxies from

CANDELS - Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey

- data (Windhorst et al. 2011). The goal is to evaluate whether it is possible to

create good classifiers without extracting task-specific features from the images.

Hence, the response here is the indicator function of the class of the galaxy, and

the covariates are the whole 84 by 84 images, which we normalized to be centered,

and to have the same major axis length9. Moreover, we rotate them so that the

major axis is perpendicular to the y-axis.

We compare the series approach (Series and SeriesDiff ) with PCA, a least squares

regression on the first components of a principal components regression; NN, a

nearest neighbors regression; and Features, a logistic regression based on the fea-

tures we developed in Freeman et al. (2013), along with traditional features from

the literature, such as Gini and M20; see Freeman et al. (2013) for more details.

We split data into training, validation and testing (50%, 25% and 25% of the data,

respectively). All tuning parameters are chosen so as to minimize the estimated

risk based on the validation set. Because most of the classes unbalanced (e.g.,

only ≈ 5% of the galaxies are mergers), rather than using a 0-1 loss, we use 2-

9 This is done by fitting an ellipse to the image via least squares.
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(Sensitivity+Specificity), i.e., 1− P(Ẑ = 1|Z = 0) + 1− P(Ẑ = 0|Z = 1), where Ẑ is

the estimated response; see Freeman et al. (2013) for additional details.
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Figure 3.4: Estimated losses of the various methods for predicting galaxy morphol-

ogy, with standard errors. While Features is based on task-specific sum-

mary statistics of the images, the other methods work directly with the

images.

Figure 3.4 shows the estimated losses for the various methods, along with stan-

dard errors. The spectral series methods have better performance than the others

when detecting disks and spheroids, and are as good as the task-specific summary

statistics for detecting non-regular galaxies. Hence, spectral series allows one to

get reasonable classification rates in these problems without going through the

process of building task-specific statistics.

3.5.4 Summary of the Experimental Results

Our main findings in the experiments were:

• Both normalizations of the kernel operator, kernel PCA and diffusion, yield

spectral series estimators with similar performance.

• Using a Gaussian kernel leads to better estimates than polynomial kernels.

• The spectral series estimator with a Gaussian kernel performed better than

most estimators, including those designed to give good results under a mani-
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fold assumption, and those known to adapt to manifold structure. Moreover,

the series estimator has better computational performance.

• Although the spectral series regression estimators have similar performance

to kernel ridge regression, they present additional advantages in terms of

interpretation and visualization.





4

C O N D I T I O N A L D E N S I T Y E S T I M AT I O N I N A R E G R E S S I O N

S E T T I N G

4.1 Introduction

In the last chapter we saw how spectral series can be used to estimate the regres-

sion of a random variable Z ∈ R given a high-dimensional random vector X ∈ Rd,

i.e., the conditional mean E[Z|x]. However, in many modern applications, one ben-

efits more from estimating f(z|x) – the full conditional density – rather than only

the regression curve. For example, the conditional density function is useful in con-

structing more accurate predictive intervals for new observations (Fernández-Soto

et al. 2001). Estimating f(z|x) is also a simple way of performing nonparametric

quantile regression (Takeuchi et al. 2006) of many quantiles simultaneously. More-

over, in, for example, forecasting and prediction in economics (Filipović et al. 2012;

Kalda and Siddiqui 2013; Gneiting and Katzfuss 2014), the conditional density it-

self is often the quantity of interest.

Finally, there are situations where the regression E[Z|x] is simply not informative

enough to create good predictions of Z, because of multi-modality, asymmetry, or

heteroscedastic noise in f(z|x). It is then more useful to construct a nonparametric

estimate of f(z|x) to describe the association between a predictor and a response.

As Z ∈ R, Efromovich (2007) refers to this problem as a “conditional density

estimation in a regression setting.” As a case in point, several recent works in

47
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cosmology (Cunha et al. 2009; Wittman 2009; Sheldon et al. 2012) have shown that

using the full probability distribution of photometric redshifts given galaxy colors

x, instead of a single-point estimate per galaxy, can significantly reduce systematic

errors in cosmological analyses; thereby, improving estimates of the parameters

that dictate the structure and evolution of our Universe. In fact, in a review of the

current state of data mining and machine learning in astronomy, Ball and Brunner

(2010) listed working with full probability density functions as one of the future

trends of the field. See Chapter 7 for more details.

In statistics and machine learning, several nonparametric estimators have been

proposed to estimate conditional densities when x lies in a low-dimensional space.

Many of them are based on first estimating f(z, x) and f(x) with for example kernel

density estimators (Rosenblatt 1969), and then combining the estimates according

to f(z|x) = f(z, x)/f(x). Several works further improve upon such an approach by

using different criteria and shortcuts to tune parameters (e.g., Hyndman et al. 1996;

Bashtannyk and Hyndman 2000; Ichimura and Fukuda 2010). Other approaches to

conditional density estimation in low dimensions include using locally polynomial

regression (Fan et al. 1996), copulas (Faugeras 2009), nearest neighbors (Zhao and

Liu 1985), direct estimation of f(z|x) using a least squares approach (Sugiyama et al.

2010b) and density estimation through quantile estimation (Takeuchi et al. 2009).

Most attempts to estimate f(z|x) when x has more than about d = 3 dimensions

rely on a dimension reduction of x prior to implementation (e.g., Fan et al. 2009).

In a different attempt to overcome the curse of dimensionality, Hall et al. (2004)

propose a method for tuning parameters in kernel density estimators which au-

tomatically determines which components of x are relevant to f(z|x). The method

produces very good results but is not practical for high-dimensional data sets: Be-

cause it is based on using a different bandwidth for each covariate, it has a high

computational cost that increases with both the sample size n and the dimension

d, with prohibitive costs even for moderate n’s and d’s. A second framework is

developed by Efromovich (2010), who proposes an orthogonal series estimator
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that automatically performs dimension reduction on x when several components

of this vector are conditionally independent of the response. He shows that this

method produces results comparable to those from Hall et al. (2004). The estimator

is based on expanding the conditional density into a sum of projections on all pos-

sible subspaces of reduced dimension, and uses shrinkage procedures to estimate

each projection. Unfortunately, the method requires one to compute d+ 1 tensor

products, which quickly becomes computationally intractable even for as few as

10 covariates.

Here, we demonstrate that spectral series bases allow one to use orthogonal

series methods more effectively in high dimensions. Besides the advantages dis-

cussed in Chapters 2 and 3, spectral series also allow f(z|x) to be estimated directly,

avoiding estimators based on ratios of random variables, such as for example

f̂(z, x)/f̂(x). The latter two-step approach is common in other approaches and is

not reliable in practical situations (Kanamori et al. 2012; Chagny 2013), especially

because estimating f(z, x) and f(x) are non-trivial tasks in high dimensions. Esti-

mating f(x) can in fact be harder than estimating f(z|x) when f(x) is less smooth

than f(z|x); see the discussion in Efromovich (2010). Division by an estimated den-

sity also tends to magnify estimation errors, particularly in regions where f(x) is

small (Sugiyama et al. 2010b).

In Figure 4.1 we display the two first basis functions, ψ1(x) and ψ2(x), for the

data set we use in our application in Section 4.4. Notice they capture the structure

of the data; they vary smoothly with the response z (redshift). Similar data points

are grouped together in the eigenmap. That is, samples with similar covariates

are mapped to similar eigenfunction values, see plots in the bottom of that figure.

Hence, when f(z|x) is smooth as a function of x, our estimator will yield good

results.

This chapter is organized as follows. In Section 4.2 we introduce our estimator.

Theoretical guarantees are provided in Section 4.3. In Section 4.4, we illustrate

the effectiveness of our proposed method with numerical examples, including an
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application to redshift estimation for galaxy data. Although for simplicity we work

mainly with the case where Z and X are continuous variables, we briefly discuss

how the methodology can be adapted to other situations.
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Figure 4.1: Top: Embedding of the red luminous galaxies of SDSS data using the

first two eigenvectors of the Gaussian kernel operator. Bottom: Covari-

ates of 4 selected galaxies with their covariates. The two eigenfunctions

capture the structure of the data and vary smoothly with the response

(redshift).

4.2 Methodology

Let (Z1, X1), . . . , (Zn, Xn) denote an i.i.d. sample, where Xi ∈ X ⊆ Rd, and the

domain of z is bounded; for simplicity, we assume Zi ∈ [0, 1]. In what follows, we

describe the construction of the spectral series estimator of the conditional density

f(z|x).

First, using the samples X1, . . . , Xn, we estimate the basis
{
ψj(x)

}
j

just as de-

scribed in Chapter 2. Recall that these eigenfunctions form an orthonormal basis

of L2(X,P) — the Hilbert space of square integrable functions with domain X and
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norm ||g||2P = 〈g,g〉P =
∫
X |g(x)|2dP(x). The conditional density f(z|x), however,

is a function of both x and z. In order to approximate f(z|x), we need an addi-

tional basis (φi)i∈N on [0, 1], the domain of z. Because z is a scalar, we can choose

(φi)i∈N to be any orthonormal basis with respect to the Lebesgue measure; that

is, any basis such that ∫
[0,1]

φi(z)φj(z)dz = δi,j.

Whereas (ψj)j is adapted to the distribution of the data, the basis (φi)i is fixed a

priori. It can, for example, be the standard Fourier basis.

The tensor product
(
Ψ(z, x)i,j

)
i,j∈N

, where

Ψi,j(z, x) = φi(z)ψj(x), i, j ∈N.

is then a basis for functions of x and z. More precisely, it is an orthonormal basis

for the space L2([0, 1]× X, λ× P), where λ is the Lebesgue measure. The central

idea of the spectral series estimator is to project f(z|x) onto
(
Ψi,j

)
i,j. The projection

is given by

f(z|x) =
∑
i,j

βi,jΨi,j(z, x), (4.1)

where

βi,j =

∫∫
f(z|x)Ψi,j(z, x)dP(x)dz =

∫∫
Ψi,j(z, x)dP(x, z) = E[Ψi,j(Z, X)]. (4.2)

Because ψ is orthogonal with respect to the data distribution, and φ is orthogonal

with respect to the Lebesgue measure, the expansion coefficients βi,j have a simple

form in Eq. 4.2: they are simply expectations over the joint distribution of X and Z.

After estimating the ψj’s, we estimate the coefficients in Eq. 4.2 by using empir-

ical averages:

β̂i,j =
1

n

n∑
k=1

Ψ̂i,j(zk, xk), (4.3)

where

Ψ̂i,j(zk, xk) = φi(zk)ψ̂j(xk) (4.4)
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is the estimate of Ψi,j(zk, xk).

Our final estimator is given by inserting the estimated basis and coefficients into

Equation 4.1:

f̂(z|x) =
I∑
i=1

J∑
j=1

β̂i,jΨ̂i,j(z, x). (4.5)

The parameters I and J control the bias/variance tradeoff: by decreasing their val-

ues, we decrease the variance, but increase the bias of the estimator. In Section

4.2.1, we explain how to choose these tuning parameters in a principled way.

Remarks:

1. One can use other bases (φi(z))i than the Fourier basis to model f(z|x) as

a function of z. For example, for spatially inhomogeneous densities (in z),

wavelets and related bases may be a good choice. This gives series methods

more flexibility as compared to estimators based on kernel smoothers (Efro-

movich 1999). Moreover, if Z assumes values in a discrete space {1, . . . ,p}, the

spectral series technique can be used to estimate a conditional probability

mass function by using as basis the functions φi(z) = I(z = i), i = 1, . . . ,p

and defining the inner products with respect to the counting measure, i.e.,

〈f,g〉 =
∑p
i=1 f(i)g(i).

2. By choosing an appropriate kernel, it is also possible to handle different data

types on the covariates. For example, in Lee et al. (2010), the authors suggest

a distance kernel that takes into account the discrete nature of genetic SNP

data. Similarly, x can represent functional data, circular data and others; see,

e.g., Schölkopf and Smola (2001) for a list of kernels that can be used in

different contexts.

3. As in the regression case, it is straightforward to extend this estimator to a

semi-supervised learning setting: if additional unlabeled data (that is, data

where the covariates x are known but z is not) are available, they can be used
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to estimate the eigenfunctions ψj’s — as long as the marginal distribution

P(x) is the same for both the labeled and unlabeled data.

4.2.1 Loss Function and Tuning of Parameters

To measure the accuracy of a given estimator f̂(z|x), we consider the loss function

L(f̂, f) =
∫∫ (

f̂(z|x) − f(z|x)
)2
dP(x)dz

=

∫∫
f̂2(z|x)dP(x)dz− 2

∫∫
f̂(z|x)f(z, x)dxdz+C, (4.6)

where C does not depend on the estimator. This loss is appropriate for many

applications: the weighting by P reflects the fact that we are primarily interested

in accurately estimating the density at x’s that occur frequently.

To tune the parameters of interest, we split the data into training and validation

sets. For each choice of the tuning parameters, we use Equation 4.3 to estimate the

coefficients in the training set. We then estimate the loss (4.6) (up to the constant

C) using the validation set (z ′1, x ′1), . . . , (z
′
n ′ , x ′n ′):

L̂(f̂, f) =
I∑
i=1

J∑
j=1

J∑
m=1

β̂i,jβ̂i,mŴj,m − 2
1

n ′

n ′∑
k=1

f̂(z ′k|x
′
k), (4.7)

where

Ŵj,m =
1

n ′

n ′∑
k=1

ψ̂j(x ′k)ψ̂m(x ′k).

It is also possible to use a cross-validation version of this estimator. Orthogonality

makes choosing I and J fast because coefficients do not have to be recomputed for

different I’s and J’s.

As in traditional low-dimensional series methods (Efromovich 1999), the final

estimate f̂, however, may not be a bona fide density: it can be negative and does

not have to integrate to one. We deal with this issue in the next section.
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4.2.2 Normalization and Spurious Bumps

Here we describe a procedure for transforming the estimate f̂ into a bona fide

density f̃. Several different approaches can be found in the literature (e.g., Glad

et al. 2003). Let

f̂max(z|x) = max
{
0, f̂(z|x)

}
.

In our experiments, the following procedure gave the best results:

• If
∫
f̂max(z|x)dz > 1, then for each x and z, define f̃(z|x) = max{0, f̂(z|x) − ξ},

where ξ is such that
∫
f̃(z|x)dz = 1. This approach was proposed by Glad

et al. (2003) in the context of unconditional density estimation.

• If
∫
f̂max(z|x)dz < 1, then define

f̃(z|x) =
f̂max(z|x)∫
f̂max(z|x)dz

.

This is a common procedure to create bona fide densities; see (Wasserman

2006).

See Glad et al. (2003) from some theoretical guarantees on these procedures.

Many times, densities estimated through orthogonal series expansions contain

small spurious bumps that arise from the approximation of the flat parts of the

underlying density (see, e.g., Efromovich 1999 for more detailed explanations). Fol-

lowing Efromovich (1999), we remove these artifacts by choosing a threshold δ and

removing bumps with mass smaller than δ, i.e., we remove a bump in the interval

[a,b] when
∫b
a f̃(z|x)dz < δ. Here we choose the threshold value δ by minimizing

the estimated loss (Equation 4.7) based on the validation set. We then renormalize

the density so that it integrates to one. In order to decrease computational com-

plexity, we take a greedy approach and choose δ after the other tuning parameters

have been chosen. Figure 4.2 shows the estimated conditional density for a fixed x

before and after removing spurious bumps in the example of Section 4.4.1.
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Figure 4.2: Example of estimated conditional density of Section 4.4.3 before (left)

and after (right) removing spurious bumps.

Algorithm 2 summarizes our spectral series approach.

Algorithm 2 Spectral Series Conditional Density Estimator
Input: Training data (z1, x1), . . . , (zn, xn); validation data (z ′1, x ′1), . . . , (z

′
n ′ , x ′n ′);

grid of ε’s, I’s and J’s . ε’s are the tuning parameters associated to the kernel

Output: Estimator f̃(z|x)

1: for all ε do

2: calculate the eigenvectors ψ̃ = ψ̃ε of the Gram matrix . Equation 2.3

3: estimate the eigenbasis Ψ̂i,j . Equations 2.4 and 4.4

4: estimate the coefficients β̂i,j . Equation 4.3

5: for all I, J do

6: Calculate the estimated loss L̂(f̂ε,I,J, f) . Equation 4.7

7: end for

8: end for

9: Define f̂ = arg min
f̂ε,I,J(z|x)

L̂(f̂ε,I,J, f)

10: Calculate f̃, the renormalization of f̂ . Section 4.2.2

11: return f̃(z|x)

4.2.3 Diffusion Kernel

In order to get bounds similar from those of Chapter 3, we also implement the

spectral series estimator based on the diffusion operator (see Section 2.2.4).
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The construction of both the tensor basis {Ψi,j}i,j and the conditional density

estimator proceeds just as described in Section 4.2 when using the operator from

Equation (2.2). The only difference is that as {Ψi,j}i,j are now orthonormal with

respect to λ× Sε instead of λ× P, the coefficients of the projection are given by

βi,j =

∫∫
f(z|x)Ψi,j(z, x)dSε(x)dz =

∫∫
f(z|x)Ψi,j(z, x)sε(x)dP(x)dz

=

∫∫
Ψi,j(z, x)sε(x)dP(x, z) = E[Ψi,j(Z, X)sε(X)].

In the next section, we bound how far the estimator f̂(z|x) is from the true con-

ditional density f(z|x) for both the Kernel PCA and the Diffusion operators.

4.3 Theory

We now present bounds on the loss (4.6) for the spectral series estimator of

Equation 4.5. We make the following assumptions:

Assumption 4.1.
∫
f2(z|x)dP(x)dz <∞.

Assumption 4.2. Mφ
def
= supz supiφi(z) <∞.

Assumption 4.3. λ1 > λ2 > . . . > λJ > 0.

Assumption 4.1 implies that it is possible to expand f into the basis Ψ. Assump-

tion 4.2 depends on the basis that are used for z and holds, e.g., for cosine or

Fourier basis. Assumption 4.3 allows one to uniquely define each of the eigenfunc-

tions (see, e.g., Ji et al. 2012 for similar assumptions, and Zwald and Blanchard

2005 on how to proceed if it does not hold). Denoting by HK the Reproducing Ker-

nel Hilbert Space (RKHS) associated to a universal kernel K1 (as for example the

Gaussian radial kernel), the assumption that the eigenvalues are strictly positive

hold as long as P(x) is nondegenerate (Cucker and Zhou 2007, pages 51 and 61).

Now, for every s > 1
2 and 0 < c < ∞, let W(s, c) denote a Sobolev space

(Wasserman 2006). We also assume the following:

1 K is universal if HK is dense in the space of continuous functions on X.
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Assumption 4.4. (Smoothness in z direction) ∀x ∈ X fixed, f(z|x) ∈W(sx, cx), where

f(z|x) is seen as a function of z, and sx and cx are such that infx sx
def
= β > 1

2 and∫
X c

2
xdP(x) <∞.

Assumption 4.4 require f(z|x) to be smooth in the z direction. This is enforced by

requiring f(z|x) to be in a Sobolev space for all x’s. The quantities β and
∫
X c

2
xdP(x)

are used to link the parameters that control the degrees of smoothness of the

different functions of x. Larger β’s indicate smoother functions. We also assume

f(z|x) is smooth in the x direction. More precisely, for the bounds on the estimator

derived from the operator of Equation (2.2), we assume

Assumption 4.5. (Smoothness in x direction) ∀z ∈ [0, 1] fixed, f(z|x) ∈
{
g ∈ HK :

||g||2HK
6 c2z

}
, where f(z|x) is seen as a function of x, and cz’s are such that cK

def
=∫

[0,1] c
2
zdz <∞.

Hence, smoothness on the x direction it is enforced by requiring f(z|x) to be in

a RKHS for all z’s. Notice smaller cK’s indicate smoother functions. The reader

is referred to, e.g., Minh et al. (2006) for an account of measuring smoothness

through norms in RKHSs.

Let n be the sample size of data used to estimate the coefficients βi,j, and m be

the sample size of the data used to estimate the basis functions (as discussed in the

remarks of Section 4.2, they don’t have to be the same). In Appendix B we prove

the following:

Theorem 4.1. Let f̂I,J(z|x) be the spectral series estimator from Section 4.2 with cutoffs

I and J, based on the eigenfunctions of operator of Equation (2.2). Under Assumptions

4.1-4.5 we have

L(f̂I,J, f) = IJ×

[
OP

(
1

n

)
+OP

(
1

λJ∆
2
Jm

)]
+ cKO (λJ) +O

(
1

I2β

)
,

where ∆J = min16j6J
∣∣λj − λj+1∣∣ .
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While the first term of the bound of Theorem 4.1 corresponds to the sampling

error of the estimator, the second and third terms correspond to the approximation

error, see Appendix B for details.

The bound depends on how smooth the functions are (it depends on cK and

β), as well as on the decay of the eigenvalues and the eigengaps. Notice that for

a fixed kernel, cK is fixed; however, by changing the kernel (e.g., by changing

the bandwidth of the Gaussian kernel), we change the notion of smoothness and

therefore its value. Because both cK and the eigenvalues depend on the kernel,

tuning parameters associated to K severely affect these rates. Therefore, it is of key

importance to choose the tuning parameters properly — a problem we address in

Section 4.2.1.

Next, to provide some insight regarding the effect of estimating the basis on the

final estimator, we work out the details of two examples where the eigenvalues

follow a polynomial decay. That is, we assume λJ � J−2α for some α > 1
2 . See Ji

et al. (2012) for some empirical motivations of why this typically holds in practice,

and Steinwart et al. (2009) for some theory and examples.

Example 4.1. In the limit of infinite unlabeled data (i.e., m −→∞) and for a power

law decay of the eigenvalues and a fixed kernel K, the bound from Theorem 4.1

becomes

IJ×OP
(
1

n

)
+O

(
1

J2α

)
+O

(
1

I2β

)
.

In this case, the optimal cutoffs are I � n
α

2αβ+α+β and J � n
β

2αβ+α+β , yielding the

rate OP
(
n− 2αβ

2αβ+α+β

)
.

Example 4.2. Assume the same eigenvalue decay as in Example 4.1. Then λJ −

λJ+1 = O
(
J−2α−1

)
. If the number of observations used to estimate the basis is

the same as that used to estimate the coefficients of the expansion, i.e., if n = m,

then the optimal cutoffs for the bound from Theorem 4.1 are I � n
α

8αβ+α+3β and

J � n
β

8αβ+α+3β , yielding the rate OP
(
n− 2αβ

8αβ+α+3β

)
.
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By comparing the rates from Examples 4.1 and 4.2, we see that estimating the

basis (ψj)j decreases the rate of convergence. On the other hand, the possibility of

using unlabeled data as described in Section 4.2 attenuates this problem.

As an illustration, consider that the RKHS H in Assumption 4.5 is the isotropic

Sobolev space with smoothness s > d and β = s (i.e., f(z|x) belongs to a Sobolev

space with the same smoothness on both directions). It is known that under some

conditions on the domain X, λJ � J−2s/d (see more details on, e.g., Steinwart

et al. 2009; Koltchinskii and Yuan 2010). In this case, the rate achieved in the limit

of infinite unlabeled data is OP
(
n
− 2s
2s+(1+d)

)
, the standard minimax rate for esti-

mating functions in d+ 1 dimensions (recall the conditional density is defined on

d+ 1 dimensions) (Stone 1982; Hoffmann and Lepski 2002). If m = n, the rate is

OP

(
n
− 2s
8s+(1+3d)

)
. Notice similar rates are obtained when learning regression func-

tions via RKHS’s (see discussion in, e.g., Ye and Zhou 2008 and Steinwart et al.

2009). Although the technique of assuming the kernel is fixed is common in the

literature, in practice one often chooses a kernel that adapts to the data. This may

substantially increase the performance of the algorithms (Steinwart et al. 2009). In

what follows we present rates for variable Gaussian kernels, where we use the

eigenfunctions of the operator of Equation (2.5), and moreover measure smooth-

ness via a density weighted operator rather than RKHSs: this is a more natural

measure under the manifold assumption (recall Chapter 3). With this, it is possible

to obtain better bounds.

Assumption 4.6. (Smoothness in x direction) ∀z ∈ [0, 1] fixed,
∫
X ‖∇f(z|x)‖

2dS(x) <

cz, where cz’s are such that
∫
[0,1] czdz <∞.

Theorem 4.2. Let f̂I,J(z|x) be the spectral series estimator from Section 4.2 with cutoffs

I and J, based on the eigenfunctions of operator of Equation (2.5). Assume 4.1-4.4 and

4.6. Moreover, assume n = m and that the kernel k = k∗ε is corrected for bias2. Then, if

2 That is, the kernel is used is K∗ε(x, y) = Kε(x,y)√
pε(x)

, where Kε is the original kernel (Coifman and Lafon

2006).
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the support of the data is on a manifold with intrinsic dimension p, and under regularity

conditions (see the Appendix A), we have that, for ε � n−2/(p+4),

L(f̂I,J, f) = O
(

1

J2/p

)
+O

(
1

I2β

)
+ IJ2(1−

1
p)OP

(
logn
n

) 2
p+4

.

It is then optimal to take J � n
4β

(p+4)(2/p+4β) and I � n
4

p(p+4)(2/p+4β) , in which case the

upper bound becomes

OP

(
n

−4β
(p+4)(1+2βp)

)
= OP

(
n
− 1

O(p2)

)
.

If, on the other hand, there is infinite unlabeled data, we have

L(f̂I,J, f) = O
(

1

J2/p

)
+O

(
1

I2β

)
+ IJOP

(
1

n

)
,

in which case it is optimal to take I � n
1

2β+1+pβ and J � n
pβ

2β+1+pβ , yielding the rate

OP

(
n− 2β

2β+1+βp

)
= OP

(
n
− 1
O(p)

)
.

Theorem 4.2 shows that the rates of convergence of the spectral series estima-

tor depend only on the intrinsic dimensionality p. More precisely, in the limit

of infinite unlabeled data, the rates are of the form OP
(
n−1/O(p)

)
. Hence, the

estimator adapts to the intrinsic dimensionality p, which can be much smaller

than the ambient dimensionality d. Recall that standard rates are of the form

OP
(
n−1/O(d)

)
(Hall et al. 2004), which are much slower if p� d. In fact, in the

isotropic scenario (i.e., β = 1 due to Assumption 4.6), the estimator achieves the

rate OP
(
n−2/(2+(1+p))

)
, which is the minimax rate for estimators defined on p+1

dimensions. If there is no unlabeled data, the rate is of the form OP

(
n−1/O(p2)

)
,

which is still much better than OP
(
n−1/O(d)

)
if p�d.

4.4 Applications

We illustrate our method using both simulated and real-world data: In Section

4.4.1, we provide a numerical example with simulated data on a low-dimensional
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submanifold. Sections 4.4.2 and 4.4.3 show examples where the covariates x are

true observations of high-dimensional data, namely images of digits and spectra

of galaxies, respectively. In both examples we have added a continuous predictor

Z with the goal of illustrating the method. Our main application is in Section 4.4.4,

where we deal with the problem photometric redshift prediction.

We compare the results of five different methods: The first method, Series, is our

proposed spectral series estimator using a radial Gaussian kernel and a Fourier

basis for the φi’s. The parameters I, J and the bandwidth of the kernel are cho-

sen according to Section 4.2.1. SeriesDiff is also the spectral series estimator, but

using the basis from the diffusion operator of Section 4.2.3. KDE is the kernel

density estimator with a Gaussian kernel. We use the package NP in R (Hayfield

and Racine 2008) to implement it. In the example of Section 4.4.1, we are able to

use the least-squares cross-validation from Hall et al. (2004) to choose the band-

width. On the other examples, this would be too time consuming due to the large

sample sizes and number of covariates, therefore we use the rule-of-thumb im-

plemented in the package. KNN is the kernel nearest neighbors approach (Zhao

and Liu 1985), with the bandwidth and the number of nearest neighbors chosen

by cross-validation. The last estimator is LS, the direct least squares conditional

density estimator (Sugiyama et al. 2010b). We use the MATLAB implementation

provided by the authors.3 Their approach has some similarities to ours: their esti-

mator also consists of a direct expansion of f(z|x) onto functions ψ; however, the

functions do not have to be orthogonal — which makes tuning parameters more

time-consuming — nor do they have to form a basis for functions in Rd+1. More-

over, such functions do not behave like a Fourier series, where lower-order terms

are smoother than higher-order terms.

To evaluate the final estimates, we use three diagnostic tests. Similar tests have

been introduced in the time series literature (see, e.g., Corradi and Swanson 2006).

3 http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LSCDE/index.html

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LSCDE/index.html
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Denoting by F̂z|xi the estimated conditional cumulative distribution function for z

given the covariates xi, we use

1. (QQPlot) For each c in a grid of values in [0, 1] and each data point i in the

test sample, compute Qci = F̂−1
z|xi

(c). Define ĉ = 1
n

∑n
i=1 I(Zi 6 Qci ). If the

estimates are reasonable, ĉ ≈ c. We plot a graph of ĉ’s versus c’s and see how

close they are to the diagonal.

2. (P-value) For each test data point i, let Ui = F̂z|xi(Zi). If the estimates are cor-

rect, U1, . . . ,Un
iid
∼ Unif(0, 1). We compute a p-value based on a Kolmogorov-

Smirnoff test that compares the distributions of these statistics to the uniform

distribution.

3. (Coverage Plot) For each α in a grid of values in [0, 1] and each data point

i in the test sample, let Ai be a set such that
∫
Ai
f̂(z|xi)dz = α. Here we

choose the set Ai with the smallest area (the highest density region). Define

α̂i =
1
n

∑n
i=1 I(Zi ∈ Ai). If the estimates are reasonable, α̂ ≈ α. We plot a

graph of α̂’s versus α’s and see how close they are to the diagonal. For each α,

we also include a 95% confidence interval based on a normal approximation

to the binomial distribution.

We also estimate the loss (4.6) (up to the constant C) for the different proce-

dures, and calculate approximate 95% confidence intervals based on 500 bootstrap

samples.

4.4.1 Klein Bottle

In the first example, we simulate data with support close to a submanifold: data

are i.i.d. observations of (X(1),X(2),X(3),X(4),Z), where
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

X(1) = 2(cosV + 1) cosU+N(0, 1)

X(2) = 2(cosV + 1) sinU+N(0, 1)

X(3) = 2 sinV cosU/2+N(0, 1)

X(4) = 2 sinV sinU/2+N(0, 1)

Z = 1
2N(U, 0.5) + 1

2N(V , 0.5)

where U,V
iid
∼ U(0, 2π). Hence, data x = (x(i))4i=1 lie close to a two-dimensional

Klein Bottle embedded in R4. The goal is to estimate the conditional density f(z|x).

We use 3,000 samples for training, 1,000 for validation, and 1,000 for testing.

Table 4.1 shows the estimated losses of the various estimators. The best per-

formance is achieved by the two spectral series estimators and the kernel density

estimator (KDE). The computational time of KDE is however 450 times slower than

Series; Series takes less than two minutes on a 2.70GHz Intel Core i7-4800MQ CPU,

but KDE takes around 14 hours due to the slow model selection procedure. Fig-

ure 4.3 shows the diagnostic measures of the series estimator; it indicates that the

final estimates are reasonable. This is in agreement with the p-value given by the

Kolmogorov-Smirnoff test, which is 0.794.
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Figure 4.3: Diagnostic tests for the spectral series estimator for klein bottle data of

Example 4.4.1.
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4.4.2 ZIP Code Data

We use the ZIP Code database from USPS (Hastie et al. 2001). The image of

each digit is represented by a vector of covariates x ∈ R16×16. Hence, data lives

in a 256-dimensional space. To illustrate our method, we use the data for condi-

tional density estimation of a simulated continuous response variable; this is not a

classification problem. We generate a response Z (not part of the original data) by

Z|X = x ∼ d(x) +Beta(d(x) + 2, d(x) + 2) −
1

2
,

where d(x) is the digit corresponding to image x. That is, Z has a shifted beta dis-

tribution, with mode on d(x) and support [d(x) − 1/2,d(x) + 1/2]. This particular

distribution was chosen for illustration purposes; we tried other distributions with

similar results. We use 4,739 samples for training, 2,552 for validation and 2,007

for testing.

Table 4.1 shows the results of fitting the estimators. It indicates that best perfor-

mance is obtained by the spectral series estimators. The only estimator that is able

to get close to is KNN, however even it does not perform as well as Series. Figure

4.4 shows the diagnostic plots, which indicate that the spectral series method yields

reasonable estimates (although they can still be improved; the p-value is 0.002). It

also presents examples of the estimated densities for 4 samples; the estimates are

indeed close to the real densities.

4.4.3 Galaxy Spectra Data

Next we apply the series method to the problem of predicting galaxy redshift (z)

using its spectra (x) (in our case, flux measurements at 3501 different wavelengths)

from the Sloan Digital Sky Survey (SDSS). This is the same data as that of Section

3.5.2.
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Figure 4.4: ZIP code data from Example 4.4.2: diagnostic tests for the spectral se-

ries method (top row); estimated conditional densities of the simulated

response Z for 4 test samples (bottom rows). Although the covariate

space has d = 256 covariates, the spectral series estimator yields rea-

sonable estimates of f(z|x).

Because the spectra determines redshift with great precision (this is not the case

for photometric data, see Section 4.4.4 and Chapter 7), the conditional density

f(z|x) is typically degenerate. For the sake of illustrating the method, we proceed

as in the digits example, and add noise to the real redshift in order to have a

random variable with a genuine probability density function. More precisely, we

create the variable

zi = z
SDSS
i + εi,
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where εi are i.i.d. N(0, 0.02) and zSDSS
i is the true redshift galaxy i. Hence, f(zi|xi)

is Gaussian with mean zSDSS
i and variance 0.02, because xi uniquely determines

zSDSS
i .

Table 4.1 shows the results of fitting different estimators. It indicates that best

performance is obtained by the spectral series estimators. Because of the high-

dimensionality, KDE does not yield reasonable estimates: both the numerator and

denominator of the ratio are typically very close to zero, yielding numerical insta-

bilities to the estimates. Figure 4.5 shows the diagnostic plots, which indicate that

the spectral series method yields reasonable estimates. The goodness-of-fit is also

indicated by the Kolmogorov-Smirnoff test p-value, 0.874. Figure 4.5 also presents

examples of the estimated densities for 4 samples; the estimates are indeed close

to the real densities.
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Figure 4.5: Spectra data from Example 4.4.3: diagnostic tests for the spectral se-

ries method (two row); estimated and real conditional densities of the

simulated response Z for 4 test samples (bottom row). Although the

covariate space has dimension d = 3501, the spectral series estimator

yields reasonable estimates of f(z|x).
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4.4.4 Main Application: Photometric Redshift Prediction

We now present the results of our main application. The goal is again to esti-

mate galaxy redshifts. However, rather then using spectra as in Section 4.4.3, we

use photometric data. Photometry is low-resolution spectroscopy, where all the

photons spanning the range of human vision are collected in several wavelength

bins. While spectroscopy allows one to estimate z with extremely high accuracy, it

is not as time-efficient as photometry, hence the need for methods based on pho-

tometric data. Here, we are interested in five magnitudes (logarithmic measures

of photon flux in each wavelength bin), denoted by u, g, r, i, and z. The differ-

ences between contiguous magnitudes (e.g., g− r) are named colors and are used

as covariates for estimating z. Several systems exist for defining the magnitudes

of a galaxy, here we work with five of them: psf, fiber, petrosian, model and

cmodel. See additional details in Chapter 7. We are interested in estimating the

conditional density f(z|x), where x’s are the observed colors. We train our model

using redshifts obtained via spectroscopy.

The first application is to a subset of Sloan Digital Sky Survey Data (SDSS)4 that

contains information about 3 colors in 4 magnitude systems5 on 3,000 red lumi-

nous galaxies. Hence there are 3*4=12 covariates. More details about this data can

be found in Freeman et al. (2009). Although 12 is relatively small, most conditional

density estimators already fail for such d. Moreover, because photometric covari-

ates are derived from the (nonobserved) spectrum of a galaxy, we expect them to

live in a smaller dimensional space. Hence, it is expected the spectral series esti-

mator will have better performance than traditional methods. We use 70% of the

data for training, 15% for validation and 15% for testing.

The next-to-last row of Table 4.1 shows the estimated loss of the conditional

density estimators. Again, spectral series estimators have the best performance,

followed by KNN (the estimator used in astronomy literature). The top row of

4 http://www.sdss.org/

5 The colors are g− r, r− i, and i− z, and are observed in psf, fiber, petrosian and model magnitudes.

http://www.sdss.org/
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Figure 4.6 presents the diagnostic plots, which indicate that the series model in-

deed has good performance. This is in agreement with the Kolmogorov-Smirnoff

p-value, 0.393.

In Figure 4.6 we also display the estimated densities for the four selected sam-

ples from Figure 4.1. As expected, the estimates vary smoothly as a function of the

eigencoordinates, but can be quite different in different regions of the map. Notice

some of the estimates have multimodalities and asymmetries. These distributions

are informative to astronomers: they are typically galaxies where a regression esti-

mate is not accurate, and hence using it may induce large errors. In such cases, it

is recommended to work with the entire distribution; see Ball and Brunner (2010)

for a review.
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Figure 4.6: Photometry on red luminous galaxies of SDSS: diagnostic tests for the

spectral series method (top row), and estimated densities for 4 galax-

ies (A,B,C, and D) from Figure 4.1 (bottom row). Vertical lines in the

bottom plots indicate spectroscopically observed redshift.

Next, we apply that methods to data from Sheldon et al. (2012)6, which contains

information on model and cmodel magnitudes of u, g, r, i, and z bands for galaxies

6 See more details about such data in Chapter 7.
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of several surveys. Besides using the colors from this bands, we also use the raw

value of the r-band, as Sheldon et al. (2012) do. Hence, there are 10 covariates. We

use 5,000 samples for training, 2,500 for validation and 2,500 for testing. Results

are shown in the last row of Table 4.1. Again series estimators have better perfor-

mance. The top row of Figure 4.7 shows the diagnostic plots. The goodness-of-fit

is not as good as that of the model for red luminous galaxies. This is possibly

because this dataset contains fainter galaxies, and is also contaminated by stars.

Hence, it is harder to estimate f(z|x), which is expected to be more multimodal

and asymmetric; nevertheless, the spectral series still has better performance than

state-of-the-art methods. The plots in the bottom row show that indeed some galax-

ies have very wiggly estimates.
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Figure 4.7: Photometry on data from Sheldon et al. (2012): diagnostic tests for the

spectral series method (two row); and estimated densities for 4 random

test galaxies (bottom row). Vertical lines in the bottom plots indicate

spectroscopically observed redshift.
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Table 4.1: Estimated L2 loss (with standard errors) of the conditional density esti-

mators. Best-performing models with smallest loss are in bold fonts.

Dataset Dim Loss

Series SeriesDiff KDE KNN LS

Klein Bottle 4 -0.81 (0.02) -0.80 (0.02) -0.79 (0.02) -0.76 (0.02) -0.47 (-0.02)

ZIP Code 256 -8.10 (0.25) -7.91 (0.27) -0.78 (0.02) -7.25 (0.23) -0.22 (0.003)

Spectra 3501 -1.75 (0.06) -1.77 (0.07) —* -1.61 (0.07) -0.256 (0.02)

Photo-z (Red) 12 -1.88 (0.07) -1.84 (0.06) -1.53 (0.03) -1.72 (0.07) -1.53 (0.05)

Photo-z (All) 10 -11.81 (0.20) -11.49 (0.21) -7.22 (0.06) –11.06 (0.21) -8.49 (0.25)

*Due to the high-dimensionality, numerical instabilities such as divisions by 0 in KDE make such

estimator not usable, see text for details.

We now use the data from Sheldon et al. (2012) to investigate the computational

shortcuts described in Section 2.2.2. First, we compare the statistical and compu-

tational performance of standard SVD when compared to Randomized SVD. We

use a fixed number of 3,000 validation samples and 10,000 testing samples, and

vary the training sample size. We always use J = 600. Results are on the top row of

Figure 4.8. Not only does Randomized SVD yield essentially the same loss as stan-

dard SVD for all sample sizes, but it also results in much smaller computational

costs, especially for large sample sizes. Hence, Randomized SVD brings computa-

tional efficiency with no loss in statistical performance. The bottom row of Figure

4.8 shows the results of the second experiment, where we evaluate the benefits

of using sparse Gram matrices. We use 5,000 training, 2,000 validation and 2,000

testing samples, and change the cutoff ξ that defines sparseness. For this sample

size, it is possible to save 30% of the memory with almost no loss in statistical

performance; hence it is possible to use a 42% larger training set with the same

memory cost. Typically, as the training sample size increases, ξ can be made even

smaller due to the larger number of neighbors each sample has.
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Figure 4.8: Top row: Benefits of using the randomized SVD from Halko et al. (2011).

There is a substantial gain in time for large sample sizes, with almost

no loss in statistical performance. Bottom row: Benefits of using sparse

gram matrices; for this sample size (5,000), it is possible to reduce the

memory use in about 30% with almost no loss in statistical perfor-

mance; see text for details.

4.4.5 Summary of the Experimental Results

Our main findings in the experiments were:

• Both normalizations of the kernel operator, kernel PCA and diffusion, yield

spectral series estimators with similar performances, which dominate the

other estimators for datasets with dimension at least 10.

• Spectral series also have the advantage of being fast, specially after the com-

putational improvements described in Section 2.2.2. Such improvements al-

low the estimator to scale to larger datasets with almost no decrease of sta-

tistical performance.

• In high-dimensions, KNN yields better estimates than KDE and LS, although

our proposed estimators typically have better performance.
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• KDE performs well if the sample space dimension is small. However, in

higher dimensions, using the bandwidth selection method from Hall et al.

(2004) is computationally very intensive. Moreover, because KDE is based on

ratios, it suffers from high numerical instabilities due to divisions by 0.

In Chapter 7 we present a more thorough analysis of the problem of predicting

redshift based on photometric data, where we also take into account the selection

bias that often occurs in such application.



5

D E N S I T Y R AT I O E S T I M AT I O N

5.1 Introduction

There has been growing interest in the problem of estimating the ratio of two

probability densities, β(x) ≡ f(x)/g(x), given i.i.d. samples from unknown distri-

butions F and G. For example, these ratios play a key role in matching training

and test data in so-called transfer learning or domain adaptation (Sugiyama et al.

2010a), where the goal is to predict an outcome y given test data x from a distri-

bution (G) that is different from that of the training data (F). Estimated density

ratios also appear in novelty detection (Hido et al. 2011), conditional density esti-

mation (Sugiyama et al. 2010b), selection bias correction (Gretton et al. 2010), and

classification (Nam et al. 2012).

Experiments have shown that it is suboptimal to estimate β(x) by first estimat-

ing the two component densities and then taking their ratio (Sugiyama et al. 2008).

Hence, several alternative approaches have been proposed that directly estimate

β(x); e.g., uLSIF, an estimator obtained via least-squares minimization (Kanamori

et al. 2009); KLIEP, which is obtained via Kullback-Leibler divergence minimiza-

tion (Sugiyama et al. 2008); KuLSIF, a kernelized version of uLSIF (Kanamori et al.

2012); and kernel mean matching, which is based on minimizing the mean discrep-

ancy between transformations of the two samples in a Reproducing Kernel Hilbert

Space (RKHS) (Gretton et al. 2010). For a review of techniques see Margolis (2011).
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Existing methods are not effective when x is of high dimension, and hence au-

thors recommend a dimension reduction prior to implementation (Sugiyama et al.

2011), which can result in significant loss of information. Here we show to use

spectral series to approximate this quantity.

This chapter is organized as follows. In Section 5.2 we explain how to use spec-

tral series to estimate a density ratio. In Section 5.3, we present some theoretical

guarantees on the estimator. Finally, in Section 5.4, we compare our estimators

with other approaches.

5.2 Methodology

In this section we will present the mathematical details behind the spectral series

estimator of a density ratio. To begin, let x denote a d-dimensional random vector,

assumed to lie in the subspace X. We observe an i.i.d. sample xF1, . . . , xFnF from an

unknown distribution F, as well as an i.i.d. sample xG1 , . . . , xGnG from an unknown

distribution G. The goal is to estimate

β(x) ≡ f(x)/g(x).

We assume that F�G so that this ratio is well-defined.

For this task, we define the kernel operator of Equation (2.2) with respect to

population G, that is, we use the eigenfunctions {ψj}j∈N of the operator Kx :

L2(X,G) −→ L2(X,G):

Kx(h)(z) =
∫
X

Kx(z, y)h(y)dG(y). (5.1)

Hence, {ψj}j∈N is an orthonormal basis of L2(X,G), i.e., the eigenfunctions are

orthonormal with respect to the data distribution G:∫
X

ψi(x)ψj(x)dG(x) = I(i = j).

Therefore, for β(x) ∈ L2(X,G), we can write

β(x) =
∑
j∈N

βjψj(x), (5.2)
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where βj =
∫
β(x)ψj(x)dG(x) = EF[ψj(X)].

To estimate ψj’s, we proceed just as in Section 2.2.1, but using the Gram matrix

based on the sample from G,



Kx(xG1 , xG1 ) Kx(xG1 , xG2 ) · · · Kx(xG1 , xGnG)

Kx(xG2 , xG1 ) Kx(xG2 , xG2 ) · · · Kx(xG2 , xGnG)
...

...
. . .

...

Kx(xGnG , xG1 ) Kx(xGnG , xG2 ) · · · Kx(xGnG , xGnG)



Next we estimate the βj’s in Eq. (5.2) using the sample from F:

β̂j =
1

nF

nF∑
k=1

ψ̂j
(
xFk
)

.

Our spectral series estimator is finally given by

β̂(x) =

 J∑
j=1

β̂jψ̂j(x)


+

. (5.3)

The tuning parameter J controls the bias/variance tradeoff: Decreasing J de-

creases the variance, but increases the bias of the estimator. We choose J (and the

other tuning parameters) in a principled way described below.

5.2.1 Loss Function and Tuning of Parameters

To evaluate the performance of an estimator β̂(x), we use the loss function

L(β̂,β) ≡
∫ (
β̂(x) −β(x)

)2
dG(x)

=

∫
β̂(x)2dG(x) − 2

∫
β̂(x)dF(x) +K

where K does not depend on β̂. We estimate this quantity (up to K) using

L̂(β̂,β) =
1

ñG

ñG∑
k=1

β̂2(x̃Gk ) −
2

ñF

ñF∑
k=1

β̂(x̃Fk), (5.4)
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where x̃G1 , . . . , x̃GñG is a validation sample from G, and x̃F1, . . . , x̃FñF is a validation

sample from F. Tuning parameters are chosen to minimize L̂(β̂,β). Note that be-

cause of the orthogonality of the ψ̂j, it is not necessary to recompute the estimated

coefficients β̂j’s for each value of J in Eq. (5.3), unlike most estimation procedures,

where estimated coefficients have to be recomputed for each configuration of the

tuning parameters. In other words, only the tuning parameters associated with the

kernel (in our case, the kernel bandwidth ε) affect the computation time.

Remark: The density ratio can more generally be defined using Radon-Nikodym

derivatives: β(x) = dF
dG(x), which can handle cases such as, e.g., text data, func-

tional data and other data types common in modern applications, in which the

distributions F and G are not dominated by Lebesgue measure. The methodology

we develop still applies as long as on is able to create a meaningful similarity

function between two samples (more specifically, a kernel).

5.3 Theory

Next we provide theoretical guarantees of the performance of the estimator β̂.

The bounds we derive have the same nature as the bounds with a fixed kernel we

derived in Chapters 3 and 4. In particular, the assumptions we make have a similar

nature:

Assumption 5.1.
∫
β2(x)dG(x) <∞.

Assumption 5.2. λ1 > λ2 > . . . > λJ > 0.

Assumption 5.3. cKx ≡ ||β(x)||2HKx
<∞.

See the theory section of Chapters 3 and 4 for an interpretation of these. Under

these assumptions, we have the following Theorem:

Theorem 5.1. Under Assumptions 5.1 – 5.3, the loss
∫ (
β̂J(x) −β(x)

)2
dG(x) is bounded

by

J×

[
OP

(
1

nF

)
+OP

(
1

λJ∆
2
JnG

)]
+ cKxO(λJ) ,
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where ∆J = min16j6J
∣∣λj − λj+1∣∣ and β̂J(x) is the spectral series ratio estimator trun-

cated at J.

See Izbicki et al. (2014) for additional details and proofs, which follow along the

same lines of those presented in the Appendix of this thesis.

As an illustration, assume a fixed kernel Kx. Then, if n ≡ nF = nG, λJ � J−2α

for some α > 1
2 , and λJ − λJ+1 � J−2α−1 (see the reasons for such assumption in

Chapter 4), then the optimal smoothing is given by J � n1/(8α+3). With this choice

of J, the rate of convergence is

OP

(
n− 2α

8α+3

)
.

5.4 Application : Correction to Covariate Shift

Assume we observe a sample of unlabeled data, as well as a sample of labeled

data, where the Z’s represent the labels and x’s are the covariates. One is often

interested in estimating the regression function E[Z|x] under selection bias, i.e.,

in situations where the distributions of labeled and unlabeled samples (fL(x) and

fU(x), respectively) are different. If the estimate Ê[Z|x] is constructed using the

labeled data with the goal of predicting Z from x on the unlabeled data, corrections

have to be made. A key quantity for making this correction under the covariate

shift assumption (Shimodaira 2000) is the density ratio fU(x)/fL(x), the so-called

importance weights (Gretton et al. 2010). See Chapter 7 for a more detailed explana-

tion. We now compare various estimators of importance weights for the problem

of photometric redshift estimation.

We use a subset of the data described in Chapter 7. The ultimate goal is to build

a predictor of galaxy redshift Z based on photometric data x; see Chapter 7 for

details. We are given a training set with covariates x of galaxies and their redshifts,

as well as unlabeled target data. Because it is difficult to acquire the true redshift

of faint galaxies, these data suffer from selection bias. We compare our method of

estimating the importance weights (Series) to uLSIF, KLIEP, and KuLSIF, described
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Figure 5.1: Estimated losses of β̂(x) with standard errors for SDSS data. The spec-

tral series estimator has best performance.

in the introduction of this chapter. We also compute LHSS, which uses uLSIF after

applying a dimension reduction technique specifically designed for estimating a

density ratio, see Sugiyama et al. (2011). Moreover, we include a comparison with a

k-nearest neighbors estimator (KNN) proposed in the astronomy literature (Lima

et al. 2008), which it not based on ratios, see Chapter 7 for more details. We do

not show results of ratio-based estimators because the estimates of fL(x) are close

to zero for many x’s, inducing estimates of β that are infinity. Moreover, we do

not compute the kernel mean matching estimate because it does not allow out-of-

sample extrapolations, and hence does not permit the use of validation sets to

tune parameters.

Figure 5.1 shows the estimated losses of the different methods of estimating the

ratio fU(x)/fL(x) when using 5,000 labeled and 5,000 unlabeled samples, and 10

photometric covariates x. We use 60% of the data for training, 20% for validation

and 20% for testing. Even though this example has a covariate space with as few

as 10 dimensions, we can already see the benefits of the spectral series estimator.

We leave more experiments to Chapter 7.
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L I K E L I H O O D F U N C T I O N E S T I M AT I O N

6.1 Introduction

Estimation of the likelihood function is necessary when the complexity of the

data-generation process prevents derivation of a sufficiently accurate analytical

form for the likelihood function. Here we exploit the fact that, in many such sit-

uations, one can simulate data sets x under different parameters θ. This is often

the case in statistical inference problems in the sciences, where the relationship

between parameters of interest and observable data is complex, but accurate simu-

lation models are available; see, for example, genetics (Beaumont 2010; Estoup et al.

2012) and astronomy (Cameron and Pettitt 2012; Weyant et al. 2013). Problems of

this type have motivated recent interest in methods of likelihood-free inference, which

includes methods of Approximate Bayesian Computation (ABC); see Marin et al. (2012)

for a review.

In our implementation, we redefine the likelihood function as L(x; θ) ≡ f(x|θ)/g(x),

where g(x) is a density with support larger than that of f(x|θ). This formulation

differs from the standard definition of the likelihood by only a multiplicative term

which is constant in θ, and hence L(x; θ) can still be used for likelihood-based in-

ference (including maximum likelihood estimation). In particular, the shape of the

posterior for θ is unaffected. The challenge of estimating the likelihood is now a

density ratio estimation problem. This approach will yield significant advantages

79



80 Likelihood Function Estimation

in cases where g is chosen to focus high probability on the low-dimensional sub-

space in which the data x lie. One natural choice is g(x) =
∫
f(x|θ)dπ(θ), where

π is a well-chosen prior distribution for θ. The orthogonality of the spectral series

with respect to g results in an efficient implementation of the estimator. Moreover,

directly estimating the ratio f(x|θ)/g(x) may itself be easier than estimating f(x|θ),

e.g., when the conditional distributions f(x|θ) for different θ are similar,1 or when

they have similar support in high dimensions. To our knowledge, this is the first

work that proposes a spectral series approach to non-parametric density estima-

tion and likelihood inference in high dimensions, although there exist attempts of

doing this in low dimensions (e.g., Diggle and Gratton 1984; Fan et al. 2013).

This chapter is organized as follows. In Section 6.2 we explain how to use spec-

tral series to estimate a likelihood function. In Section 6.3, we present some theoret-

ical guarantees on the estimator. Finally, in Section 6.4, we compare our estimators

with other approaches.

6.2 Methodology

Let θ ∈ Θ be a p-dimensional parameter. In this context, x ∈ X ⊆ Rd is a

random vector representing a single sample observation. We will adopt a Bayesian

perspective, and let Fθ be the marginal distribution for θ, i.e., the prior, and let

G denote the marginal distribution for x. Then, let (xF1, θ1), . . . , (xFnF , θnF) be an

i.i.d. sample from the joint distribution of x and θ. Further, let xG1 , . . . , xGnG be an

i.i.d. sample from G. Our objective is to estimate the ratio

L(x; θ) ≡ f(x|θ)
g(x)

, (6.1)

1 A trivial example: If x is independent of θ, f(x|θ)/g(x) = 1 is a constant function, whereas

f(x|θ) = f(x) may be a harder to estimate (nonsmooth) function. Similarly, if x = (x1, x2), and

x1 is independent of x2 given θ, it can be shown f(x|θ)/g(x) does not depend on x2, but f(x|θ) does.

Hence, f(x|θ) is typically harder to estimate, because it is a function of more variables.
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where f(x|θ) is the conditional density of x given θ, and g(x) is the marginal density

for x. This is, up to a multiplicative factor that is not a function of θ, the standard

definition of the likelihood function.

To estimate L(x; θ), we use a spectral series approach as in the other Chapters,

but because the likelihood is a function of both x and θ, we consider the tensor

product of a basis for x and a basis for θ, {Ψi,j}i,j∈N, where

Ψi,j(x, θ) = ψj(x)φi(θ), i, j ∈N.

The construction of the separate bases {ψj}j and {φi}i proceeds just as described in

Section 2.2.1. Note that for θ, we consider the eigenfunctions {φi}i of the operator

Kθ : L2(Θ, Fθ) −→ L2(Θ, Fθ):

Kθ(h)(ξ) =
∫
Θ

Kθ(ξ,µ)h(µ)dFθ(µ),

where Kθ is not necessarily the same kernel as Kx. That is, while {ψj}j is estimated

using a Gram matrix based on xG1 , . . . , xGnG , {φi}i is estimated using θ1, . . . , θnF .

Since {φi}i is an orthonormal basis of functions in L2(Θ, Fθ), the tensor product

{Ψi,j}i,j is an orthonormal basis for functions in L2(Θ×X, Fθ ×G)2.

The projection of L(x; θ) onto {Ψi,j}i,j is given by

∑
i,j∈N

βi,jΨi,j(x, θ),

where

βi,j =

∫∫
L(x; θ)Ψi,j(x, θ)dG(x)dFθ(θ)

= EF
[
Ψi,j(x, θ)

]
. (6.2)

Hence, we define our likelihood function estimator by

L̂(x; θ) =
I∑
i=1

J∑
j=1

β̂i,jΨ̂i,j(x, θ), (6.3)

2 Notice that, contrary to what was done for conditional densities in Chapter 4, here we do not use

a fixed basis neither for x nor for θ. The reason for this is that we want to avoid tensor products in

higher dimensions.
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where β̂i,j = 1
nF

∑nF
k=1 Ψ̂i,j

(
xFk, θk

)
, and

Ψ̂i,j(x, θ) = ψ̂j(x)φ̂i(θ)

is the estimator for Ψi,j(x, θ), obtained via a Nyström extension as in Section 2.2.1.

The tuning parameters I and J control the bias/variance tradeoff. Because we de-

fine the likelihood in terms of g(x) (Eq. 6.1), we can take advantage of the or-

thogonality of the basis functions when estimating the coefficients βi,j; see Eq. 6.2.

The result is a simple and fast-to-implement procedure for estimating likelihood

functions for high-dimensional data.

6.2.1 Loss Function and Tuning of Parameters

To evaluate the performance of a given estimator, we use the loss function

L
(
L̂,L

)
≡
∫ (

L̂(x; θ) −L(x; θ)
)2
dG(x)dF(θ)

=

∫
L̂(x; θ)2dG(x)dF(θ)

− 2

∫
L̂(x; θ)dF(θ, x) +K, (6.4)

where K does not depend on L̂. We can estimate this quantity (up to K) by

L̂
(
L̂,L

)
=
1

B

B∑
l=1

[
1

ñ

ñ∑
k=1

(
L̂
(

x̃Gk |θ̃
(l)
k

))2]

−
2

ñ

ñ∑
k=1

L̂(x̃Fk|θ̃k),

where x̃G1 , . . . , x̃Gñ is a validation sample from G; (θ̃1, x̃F1), . . . , (θ̃ñ, x̃Fñ) is a valida-

tion sample from the joint distribution of x and θ; θ̃(l)1 , . . . , θ̃(l)
ñ

for l = 1, . . . ,B are

random permutations of the original sample θ̃1, . . . , θ̃ñ; and B is a number lim-

ited only by computational considerations. We choose tuning parameters so as to

minimize L̂.

Remark: As in this case of a ratio (Chapter 5), the likelihood function can more

generally be defined using Radon-Nikodym derivatives: L(x; θ) = dF
dG(x|θ), which
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can handle cases such as, e.g., text data, functional data, and other data types com-

mon in modern applications, in which the distributions F and G are not dominated

by Lebesgue measure. Again, the methodology we develop still applies as long as

one is able to create a meaningful similarity function between two samples (more

specifically, a kernel).

6.3 Theory

The bound we derive for the spectral series estimator of a likelihood function

has the same nature as the bounds with a fixed kernel we derived in Chapters 3

and 4. In particular, the assumptions we make have a similar nature:

Assumption 6.1.
∫∫

L2(x; θ)dG(x)dF(θ) <∞.

Assumption 6.2. λx
1 > λ

x
2 > . . . > λ

x
J > 0.

Assumption 6.3. λθ1 > λ
x
2 > . . . > λ

θ
I > 0.

Assumption 6.4. For all fixed θ ∈ Θ, L(x; θ) ∈ {g ∈ HKx : ||g||2HKx
6 c2θ} where cθ’s

are such that cKx ≡
∫
Θ c

2
θdF(θ) <∞.

Assumption 6.5. For all fixed x ∈ X, L(x; θ) ∈ {h ∈ HKθ : ||h||2HKθ
6 c2x } where cx’s

are such that cKθ ≡
∫
X c

2
xdG(x) <∞.

Notice that, in these assumptions, the superscripts x and θ denote quantities as-

sociated with the eigenfunctions ψj’s and φi’s, respectively. See the theory section

of Chapters 3 and 4 for an interpretation of these. Under these assumptions, we

have the following Theorem:

Theorem 6.1. Under Assumptions 6.1 – 6.5, the loss L
(
L̂I,J,L

)
is bounded by

IJOP

(
max

{
1

λx
J∆
2
x,JnG

,
1

λθI∆
2
θ,InF

})
+ cKθO

(
λθI
)
+ cKxO

(
λx
J

)
Similar interpretation holds for this bound as those from the other chapters. See

Izbicki et al. (2014) for additional details and proofs, which follow along the same

lines of those presented in the Appendix of this thesis.
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6.4 Numerical Experiments

The general setup for using the estimator is as follows. We have data which are

modeled as an i.i.d. sample x1, . . . , xm from the distribution f(x|θ). Our goal is to

infer the value θ. Although we are able to simulate from f(x|θ) for fixed θ, we lack

an analytical form for the likelihood function. Hence, we use the methodology of

Section 6.2 to estimate L(x; θ) from a simulated sample. Once we have an estimate

L̂(x; θ), we can approximate the likelihood of an observed sample according to

L̂ ((x1, . . . , xm); θ) =
m∏
k=1

L̂(xi; θ).

This approximation can then be used in likelihood-based inference by, for example,

plugging the expression into Bayes Theorem or by finding the maximum likelihood

estimate.

In what follows we present five numerical examples where the ambient dimen-

sionality of x is larger than its intrinsic dimensionality. In all experiments, we

choose a uniform prior distribution on the parameter space.

Spiral. The data are i.i.d. observations of (X(1),X(2)), where

X(1) = θ cos θ+N(0, 1) and X(2) = θ sin θ+N(0, 1)

for 0 < θ < 15. Although the dimension of the sample space is 2, the data lie close

to a one-dimensional spiral.

Klein Bottle. The data are i.i.d. observations of (X(1),X(2),X(3),X(4)), where

X(1) = 2(cos θ2 + 1) cos θ1 +N(0, 1)

X(2) = 2(cos θ2 + 1) sin θ1 +N(0, 1)

X(3) = 2 sin θ2 cos θ1/2+N(0, 1)

X(4) = 2 sin θ2 sin θ1/2+N(0, 1)

for 0 < θ1, θ2 < 2π. The dimension of the sample is 4, but the data lie close to a

two-dimensional Klein Bottle embedded in R4.
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Transformed Images. In this example, we rotate and translate an image of a

tiger, see the top row of Figure 6.1. The model parameters are (θ, ρx, ρy). The

transformed images are centered at (ρx +NT (0, 10), ρy +NT (0, 10))3 with rotation

angle (θ+N(0, 10)). The final images are cropped to 20× 20 pixels, i.e., the sample

space has dimension 400.

Transformed Images

1

1

Edges

1

Galaxies

Figure 6.1: Some examples of data generated according to Section 6.4. (The top

left image is the original image in “Transformed Images”.)

Edges. Here we generate 20× 20 images of binary edges from a model with two

parameters, α and λ. The data are i.i.d. observations of an edge with rotation angle

α+N(0,π/4) and displacement λ+NT (0, 0.5) from the center, see Figure 6.1 for

some examples.

Simulated Galaxy Images. The last example is a simplified version of a key

estimation problem in astronomy, namely that of shear estimation (Bridle et al.

2009). We use the GalSim Toolkit4 to simulate realistic galaxy images. We sample

two parameters: First, the orientation with respect to the x-axis of the image and,

second, the axis ratio of the galaxies, which measures their ellipticity. To mimic

a realistic situation, the observed data are low-resolution images of size 20× 20.

3 NT is the truncated normal to guarantee that the parameters are in the range of the image.
4 https://github.com/GalSim-developers/GalSim
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Figure 6.1, bottom, shows some examples. These images have been degraded by

observational effects such as background noise, pixelization, and blurring due to

the atmosphere and telescope; see Figure 6.2

	 	 	
	 	 	
	 	 	

1

Figure 6.2: Examples of galaxies with different orientations and axis ratios. From

left to right: High-resolution, uncontaminated galaxy image; effect of

PSF caused by atmosphere and telescope; pixelated image; and ob-

served image containing additional Poisson noise. We only observe im-

ages on the right.

We assume that the orientation and axis ratio of galaxy i are given by

ai ∼ Laplace(α, 10) and ri ∼ NT (ρ, 0.12),

respectively. We seek to infer θ = (α, ρ) based on an observed i.i.d. sample of

images x contaminated by observational effects. Notice we do not observe ai and

ri, but only xi, the 400-dimensional noisy image.

Methods. In all examples, the likelihood function is estimated based on nF =

nG = 5, 000 observations from the simulation model; 60% of the data are used for

training and 40% for validation. We compare Series, our spectral series estimator

from Section 6.2, with two state-of-the-art estimators of f(x|θ). The first estimator

is KDE – a kernel density estimator based on taking the ratio of kernel estimates of

f(x, θ) and f(θ). We use the implementation from the package “np” (Hayfield and

Racine 2008) for R. For the Spiral and Klein bottle examples, we select the band-

widths of KDE via cross-validation. However, the high dimension of the other ex-
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amples (Transformed, Edges, and Galaxy) makes a cross-validation approach com-

putationally intractable and the density estimates numerically unstable. For these

examples, we instead use the default reference rule for the bandwidth, and we re-

duce the dimensionality of the data with PCA with number of components chosen

by minimizing the estimated loss (Eq. 6.4). The second estimator in our compar-

isons is LS – the direct least-squares conditional density estimator of Sugiyama

et al. (2010b). This estimator is based on a direct expansion of the likelihood into

a set of prespecified functions. This approach typically yields better results than

estimators based on the ratio of random variables. Again, to avoid the problem

of high dimensionality in the examples with d > 4, we also implement PCA+LS,

the direct least-squares conditional density estimator after dimension reduction

via PCA, with number of components chosen so as to minimize the estimated

loss. PCA has the additional goal of decorrelating adjacent pixels in the images

examples.

Table 6.1: Estimated L2 loss (with standard errors) of the likelihood function esti-

mators. Best-performing models with smallest loss are in bold fonts.

DATA DIM. L2 LOSS

Series LS PCA+LS KDE PCA+KDE

Spiral 2 7.13 (0.14) 6.61 (0.12) — 2.95 (0.30) —

Klein Bottle 4 1.45 (0.07) 2.02 (0.06) — 1.68 (0.11) —

Transf. Images 400 20.94 (0.03) 26.91 (0.04) 27.12 (0.03) — 26.62 (0.06)

Edges 400 0.70 (0.03) 1.77 (0.02) 1.55 (0.03) — 1.60(0.02)

Galaxy Images 400 40.94 (0.03) 42.57 (0.01) 42.53 (0.01) — 43.99 (0.04)

Results. In Tables 6.1 and 6.2, we present the estimated L2 loss (Eq. 6.4), as well

as the estimated average likelihood E(X,θ)[L̂(X; θ)] based on a test set with 3,000
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Table 6.2: Estimated average likelihood (with standard errors) of the likelihood

function estimators. Best-performing models with largest average likeli-

hood are in bold fonts.

DATA DIM. AVERAGE LIKELIHOOD

Series LS PCA+LS KDE PCA+KDE

Spiral 2 16.54 (0.16) 19.49 (0.14) — 28.62 (0.01) —

Klein Bottle 4 5.62 (0.08) 4.96 (0.08) — 5.63 (0.13) —

Transf. Images 400 8.31 (0.03) 1.83 (0.03) 1.08 (0.02) — 1.58 (0.06)

Edges 400 3.69 (0.04) 1.72 (0.02) 2.55 (0.03) — 2.10 (0.02)

Galaxy Images 400 4.63 (0.04) 2.24 (0.01) 2.43 (0.02) — 1.01 (0.04)

observations5. Both measures indicate that, while traditional methods have better

performance in low dimensions, our spectral series method yields substantial im-

provements when the ambient dimensionality of the sample space is large. Note

that even after dimension reduction, LS does not yield the same performance as

Series. In fact, in some cases, a dimension reduction via PCA leads to less accurate

estimates.

As a further illustration, Figure 6.3 shows the estimated likelihood function for

samples of size m = 10, 20, 30 and 50 drawn from the galaxy image model with

parameters α = 80◦ and ρ = 0.2 (recall m is the observed data sample size). For

comparison, we also include the true likelihood function (TRUTH), which is un-

available in practical applications6. It is apparent from the figure that the spectral

series estimator comes closer to the truth than the other estimators, even without

reducing the dimensionality of the galaxy images.

Furthermore, to quantify how the level sets of the likelihood function concen-

trate around the true parameters, we define the expected average distance of the es-

5 To make results comparable, we renormalize the estimated likelihood functions to integrate to 1 in

θ.
6 Because the observed images are simulated, we know the true values of ai and ri.
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timated likelihood function to the real parameter value, Ex,θ∗
[∫
d(θ∗, θ)L̂(x; θ)dθ

]
7,

where the expectation is taken with respect to both θ∗ and the observed data. Here

we choose d(θ∗, θ) to be the Euclidean distance between the vectors of parameters,

standardized so that each component has minimum 0 and maximum 1.
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Figure 6.3: Comparison of level sets of estimated likelihood function L(x; (α, ρ)) for

the galaxy example for 4 samples sizes. Horizontal and vertical lines

are the true values of the parameters. In all cases, the spectral series

estimator gets closer to the real distribution, which is uncomputable in

practice.

7 As the prior distribution is uniform, this quantity is Ex,θ∗

[∫
d(θ∗, θ)df̂(θ|x)

]
.
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As a final comparison of methods, we study how the above likelihood metric

changes as a function of the sample size m of the observed data (the sample sizes

nF and nG of the simulated data used to estimate the likelihood are held constant);

see Figure 6.4 for results. Because L(x; θ) concentrates around the true parameter

value θ∗ for large sample sizes, we expect the average likelihood to decrease as

m increases – if the likelihood estimates are reasonable. Indeed, we observe this

behavior for all methods in the comparison for the problems with low dimensional-

ity. However, for the problems with high dimensionality, this is no longer the case.

On the other hand, the results indicate that Series is able to overcome the curse of

dimensionality and recover the true θ∗ parameter as the number of observations

increases.
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Figure 6.4: Average distance of estimated likelihoods to the true θ (and standard

errors) as a function of the number of observed images for the galaxy

data. While in low dimensions all estimators have similar performance,

our approach performs better in high dimensions.
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6.5 Future Work

In this chapter we saw the spectral series estimator of a likelihood function yields

better estimates than other likelihood function estimators in high dimensions. We

now describe some future directions that can be taken on this problem, which we

plan to explore in a forthcoming paper.

6.5.1 Non i.i.d. Data

It would be desirable to extend the method to non i.i.d. data. If one is willing

to use summary statistics as in standard ABC, this can be done by estimating the

likelihood function L(s(x); θ), where s(x) = (s1(x), . . . , sp(x)) is a vector of sum-

mary statistics. In this framework, the kernel K would then measure the similarity

between such vectors, K(s(x), s(y)).

6.5.2 Likelihood Estimation versus ABC

Some advantages of using conditional density estimation over traditional ABC

can be explored. For example, framing the likelihood-free inference problem as a

CDE problem allows one to select a subset from a collection of possible summary

statistics. This can be done in the same fashion as we describe in the photometric

redshift prediction problem in Chapter 7.

Another interesting feature is that one can take advantage of the fact that there is

a natural way to check goodness-of-fit of the estimated likelihood function. More

specifically, it is possible to compute p-values for the hypothesis that the estimated

and the true likelihood functions are the same by using the following procedure:

1. Sample θ ∼ π(θ).

2. Sample xθ1 , . . . , xθn from f(x|θ).



92 Likelihood Function Estimation

3. Using a rejection sampler, sample x∗1, . . . , x∗n from f(x|θ) under the hypothesis

that L̂(x|θ) = L(x|θ). This can be done by repeating the following step until

obtaining a sample of size n:

• Let M ≡ supx L̂(x|θ).

• Sample xi ∼ g(x), accept it with probability L̂(x|θ)/M.

4. Calculate the p-value of the hypothesis that xθ1 , . . . , xθn comes from the same

distribution as x∗1, . . . , x∗n (using, e.g., Gretton et al. 2007).

One might than test whether the collection of p-values obtained for all θ ′s comes

from a uniform distribution. Notice that defining the likelihood function as the

ratio f(x|θ)/g(x) is the key for being able to sample from the conditional density. It

would be interesting to test if such method has reasonable performance in practice;

for example, if it has good power properties.

Finally, it would be desirable to systematically compare the performance of the

spectral series approach – both computational and statistical – with traditional

ABC methods, including MCMC-ABC (Marjoram et al. 2003) and SMC-ABC (Sis-

son et al. 2007).

6.5.3 Likelihood Estimation via Regression

Because in most problems parameters are not expected to lie on a lower-dimensional

space, estimating the basis for θ in the likelihood function estimator of Equation

6.3 may be an unnecessary step. A possible way of avoiding this is to fix θ0 ∈ Θ,

and expand the likelihood function in the basis (ψj(x))j. The expansion is given

by

L(x; θ0) =
∑
j>1

βθ0j ψj(x),

where

βθ0j =

∫
X

ψj(x)L(x; θ0)dP(x) =
∫
X

ψj(x)
f(x|θ0)
g(x)

dP(x) = E[ψj(X)|θ0]
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This indicates that the coefficients may be estimated by regressing ψj(X) on θ using

the simulated sample (θ1, x1), . . . , (θn, xn).

A second way of avoiding estimation of this basis is to use, for example, the

basis proposed by Sugiyama et al. (2010b) for θ together with spectral series for x.

This would require, however, new methods for computing the estimator efficiently,

because such basis is not orthogonal with respect to π(θ). Alternatively, if θ is

small-dimensional, one may use tensor products of Fourier bases.
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P H O T O M E T R I C R E D S H I F T P R E D I C T I O N U N D E R S E L E C T I O N

B I A S

7.1 Introduction

Technological advances over the last two decades have ushered in the era of

“precision cosmology," with the construction of catalogs that contain data on up-

wards of 10
8 galaxies (e.g., Aihara et al. 2011). Cosmologists use these data to

place progressively tighter constraints on the parameters of the ΛCDM model, the

leading model explaining the structure and evolution of the Universe (see, e.g.,

Springel et al. 2006). This data flood will only intensify in the next two decades:

for instance, the Large Synoptic Survey Telescope is expected to collect data for up

to 10
10 galaxies during its ten years of observations that will begin c. 2020 (Ivezić

et al. 2008).

To constrain cosmological parameters, cosmologists need to estimate galaxy red-

shifts, a proxy for distance that may be precisely estimated via spectroscopic data.

Unfortunately, spectroscopy is resource intensive, and is generally only applied

to the brightest galaxies in a survey. As a result, more than 99 percent of cur-

rent galaxy observations are done via photometry, essentially a low-resolution spec-

troscopy. Photometry, however, does not allow redshifts to be estimated with as

much precision as spectroscopy does, see Section 7.2 for more details.

97
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The goal of photometric redshift estimation (or photo-z estimation) is to construct

probability density functions (pdfs) for ensembles of galaxies, conditional upon

their photometric covariates. Cosmologists use the resulting ensemble of pdfs to

inform cosmological analyses. Initially, they viewed photo-z estimation as a re-

gression problem in which one sought E[Z|x], where x is the vector of photometric

covariates of the galaxy and Z represents its redshift. However, some have come to

realize the importance of estimating f(z|x), the conditional density of the redshift

based on photometric magnitudes: f(z|x) can be asymmetrical and multi-modal,

thus making E[Z|x] not effective in summarizing f(z|x) (see, e.g., Ball and Brun-

ner 2010 and Wittman 2009). Using an estimate f̂(z|x) can substantially improve

cosmological analyses based on redshift estimates (e.g., Wittman 2009).

There are two ways by which cosmologists estimate f(z|x). In the first method,

template fitting (e.g., Fernández-Soto et al. 1998), one estimates f(z|x) for a given

galaxy by directly comparing its data with a suite of idealized photometric data

sets for different types of galaxies at different redshifts. In this chapter, our interest

lies in the second method, empirical redshift estimation. In this method, one uses ma-

chine learning techniques to train an estimator of f(z|x) utilizing spectroscopically

derived redshifts for galaxies and their associated photometric data (see, e.g., Ball

and Brunner 2010; Zheng and Zhang 2012; Kind and Brunner 2013).

Standard machine learning methods should not be naively used on such data:

Because spectroscopy can generally be applied to only the brightest galaxies in a

survey, in general it is not reasonable to assume photometric data are identically

distributed to the spectroscopic data. That is, there is a selection bias that favors

spectroscopic data sets with less faint samples than the photometric data sets (see,

e.g., Oyaizu et al. 2008; Ball and Brunner 2010, and Figure 7.1). Although not taking

into account selection bias may substantially decrease the performance of estima-

tors and artificially diminish their nominal errors, few works on redshift prediction

deal with this issue explicitly. One exception is the estimator of f(z|x) developed
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by Cunha et al. (2009). The development of improved methods for mitigating this

problem is the subject of this chapter.
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Figure 7.1: Distribution of r-band model magnitudes (upper left) and the four col-

ors (i.e., differences of the model magnitudes in adjacent photometric

bins) for spectroscopic and photometric SDSS data sets. For more de-

tails, see Section 7.2.

Contribution

In this chapter, we introduce a statistically rigorous framework for estimating

photometric redshift distributions under selection bias, which more generally can

be applied to other regression and conditional density estimation problems where

there is a difference in how training and target data are selected. We design ap-

propriate loss functions for the selection bias setting, and show how these can be

estimated using a spectroscopic (training) and a photometric (target) sample (eqs.

7.5 and 7.9). The set-up allows for a principled way of choosing tuning parame-

ters, comparing and combining different conditional density estimators, as well as

performing variable selection. Here, we describe in detail how to go about each of

these problems and suggest non-parametric procedures that are both flexible and

practical for large databases.

In particular, we propose two alternative non-parametric estimators to the con-

ditional density estimator of Cunha et al. (2009). We compare our new estimators

to that of Cunha et al. (2009) using SDSS data and demonstrate that they yield im-
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proved results. Moreover, we introduce a principled method of combining two or

more conditional density estimators for optimal performance under different sam-

pling schemes. We compare various methods for estimating importance weights –

an important quantity used to correct methods so that they work under selection

bias – and describe how to test the goodness-of-fit of the final density estimates.

The organization of this chapter is as follows. In Section 7.2 we describe the

data that we use to assess previous and new methodologies, and in Section 7.3,

we lay out the statistical problem of density estimation under selection bias. We

explain how to match training and target samples using importance weights, and

we compare different schemes for estimating these weights. In Section 7.4, we shift

to the problem of constructing conditional density estimators under selection bias.

We describe how to use the estimated importance weights to build an appropriate

loss function for evaluating conditional density estimators under selection bias,

and we propose and compare different density estimators designed for this setting.

We also discuss variable selection, and how to evaluate goodness-of-fit of density

estimates. In Section 7.5 we show an application of our methods to the problem of

galaxy-galaxy lensing. Finally, in Section 7.6, we summarize and discuss the main

results.

7.2 Data

Redshift estimators are built using two types of data: spectroscopic data, where

both the covariates x and the labels z are known, and photometric data, where

only the covariates x are known and which is where the estimated f(z|x)’s will be

applied. Below we describe the data used to test our methods, the SDSS photometric

sample, the spectroscopic sample, and the simulated photometric samples.

SDSS photometric sample. To construct our photometric data set, we use Sloan

Digital Sky Survey (SDSS; York et al. 2000). Since 2000, SDSS has utilized a dedi-

cated 2.5-meter telescope at Apache Point, New Mexico, to collect data on over 200
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million galaxies that are spread over nearly one-quarter of the sky. We extract SDSS

DR8 (Aihara et al. 2011) galaxies from from a ≈72 square-degree patch of sky (RA

∈ [168
◦,192

◦] and δ ∈ [−1.5◦,1.5◦]), and filter the data according to the prescription

of Sheldon et al. (2012). Our filtered data set numbers 538,974 galaxies.

In photometry, as image data are collected, different photometric filters are se-

quentially placed into the telescope’s light path, with each one allowing only those

photons in a specific wavelength band to pass through. The five SDSS bands–

denoted u, g, r, i, and z–span the range of wavelengths from 3.5× 10−7 meters

(ultraviolet light) through the optical regime to 9× 10−7 meters (infrared light).

Within each image are sources that are detected and classified via pipeline soft-

ware. Photometric fluxes–i.e., the galaxy fluxes in each of the ugriz bands–are then

estimated for each detected galaxy by effectively drawing a boundary around it

and summing the light intensity within that boundary. There are several boundary-

definition algorithms or magnitude systems used in SDSS pipeline processing; in this

work, we follow Sheldon et al. (2012) and use as our covariates the eight colors esti-

mated using the model and cmodel algorithms. The logarithm of the ratios of fluxes

in adjacent bands are dubbed photometric colors and are the covariates we use for

the analysis. We also use the raw r magnitude (i.e., the logarithm of the flux in r

band) in both model and cmodel measurements. We scale the 10 covariates so that

they have mean 0 and standard deviation 1.

Spectroscopic sample. As mentioned above, SDSS has collected photometric

data for over 200 million galaxies. Of these, some one million have been the sub-

ject of follow-up spectroscopic observations, in which fiber optics are used to redi-

rect a galaxy’s light to two spectrographs that are sensitive to blue and red light,

respectively. Via pipeline processing, the dispersed light is mapped to ≈3,500 pix-

els, allowing emission and absorption spikes that are smeared out by photometry

to be finely resolved. These spikes, which are caused by upward (absorption) or

downward (emission) transitions of electrons between atomic energy levels, occur

at known wavelengths. One can use the wavelength ratios for two or more ob-
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served spikes to infer which transitions they represent; once that information is

known, redshift estimation is trivial. Because the observed spikes are generally

narrow and numerous, the typical precision in spectroscopic redshift estimation is

∆z/z ∼ 10−6, i.e., we may safely make the simplifying assumption that for spectro-

scopic redshifts, there is no measurement error.

We follow Sheldon et al. (2012), and use a spectroscopic data (i.e., colors and

redshifts) from a variety of sources (but mostly from SDSS Data Release 8). We use

Sheldon et al.’s spectroscopic data set directly (435,875 galaxies; E. Sheldon, private

communication). The goal of using additional spectroscopic sources besides SDSS

is to have fainter galaxies on the labeled sample, and hence cover the same region

of observables from the photometric sample.

Simulated photometric samples. In addition to the photometric sample from

SDSS, we also use the spectroscopic data to create simulated photometric sets. This

is done because (i) it provides a wider range of data sets for comparing the meth-

ods (ii) contrary to the real SDSS photometric set, the redshifts for such samples

are known, allowing more thorough comparisons, and (iii) it is possible to study

robustness to selection bias of different methods.

More specifically, we create a photo-z prediction setting under 3 different sce-

narios – with no, moderate and strong selection bias, respectively. We use rejection

sampling to construct these sets that are shifted relative to the spectroscopic sam-

ple. More precisely: Let xr denote the r model magnitude, scaled to be between 0

and 1. The larger the r model magnitude, the fainter the galaxy. We assume that

p(x), the probability that a data point in the spectroscopic sample is also included

in the unlabeled data, depends on x through xr only; i.e. p(x) = p(xr). We consider

three different sampling schemes:

Scheme 1: p(xr) ∝ Beta(1, 1) ≡ Unif(0, 1),

Scheme 2: p(xr) ∝ Beta(13, 4),
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Scheme 3: p(xr) ∝ Beta(18, 4).

Figure 7.2 shows the resulting distributions of the r-band model magnitude for

labeled and unlabeled data. The amount of covariate shift corresponds to what one

might observe in practice for astronomical surveys. Scheme 1 corresponds to no

selection bias, with labeled and unlabeled data following the same distribution. In

contrast, for Scheme 3, there is a strong selection bias with a large proportion of the

galaxies in the unlabeled set being significantly fainter (shifted toward large r-band

magnitude) than the galaxies in the labeled set. Sampling scheme 2 represents a

case in-between 1 and 3.
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Figure 7.2: Distribution of r-band model magnitude under three different sampling

schemes of spectroscopic data.

7.3 Selection Bias , Covariate Shift and Importance Weights

A popular method for correcting for selection bias in regression and classifica-

tion is by sample reweighting. In this section, we define our notation, explain the

main ideas behind importance weights, and provide a framework for comparing

different methods for estimating these weights.
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7.3.1 Problem Formulation

Let x ∈ Rd denote the covariates of interest — in our application, the photomet-

ric colors, magnitudes, and other observables. Let z ∈ R denote the redshift of a

galaxy. Without loss of generality, we assume z ∈ [0, 1]. Suppose we observe an

i.i.d. sample (xL1 , zL1), . . . , (x
L
nL

, zLnL) with labels from spectroscopic measurements

and an i.i.d. unlabeled sample xU1 , . . . , xUnU with only photometric data (also known

as target data). Our goal is to build an estimator f(z|x) that has good performance

on the unlabeled target data. Although the standard assumption in machine learn-

ing is that labeled and unlabeled data have similar distributions, we saw in Figure

7.1 that this is not the case in redshift surveys.

Let PL denote the distribution on the labeled sample and let PU denote the

distribution on the unlabeled sample, i.e., (xL, zL) ∼ PL and (xU, zU) ∼ PU (where

the zU’s are never observed in practice). In the machine learning literature on data

set shift (Quionero-Candela et al. 2009), the aim is to understand how a PL 6= PU

shift affects learning algorithms and to design classifiers that perform well for

the target distribution PU. This is a hopeless problem if PL has no relationship

to PU (Gretton et al. 2010). Hence, some assumptions have to be made regarding

how PL and PU are related. Different assumptions have been proposed in the

literature for different types of data set shift; see, e.g., Quionero-Candela et al.

(2009) and Moreno-Torres et al. (2012) for an overview. In our photo-z application,

it is often reasonable to assume that whether a sample is spectroscopically labeled

or not only depends on observable covariates, such as the photometric colors in a

given magnitude system (Lima et al. 2008; Sheldon et al. 2012). In other words, the

assumption is that

P(S = 1|x, z) = P(S = 1|x), (7.1)

where x denotes the observed covariates, and S is a random variable that assumes

the value 1 if a given datum is labeled and 0 otherwise. In the statistics literature
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(Rubin 1976; Moreno-Torres et al. 2012), this condition is commonly referred to as

missing at random (MAR). MAR bias implies covariate shift, defined as

fL(x) 6= fU(x), fL(z|x) = fU(z|x). (7.2)

Under certain conditions on the support of fL(x) and fU(x), covariate shift also im-

plies MAR bias (Moreno-Torres et al. 2012). Here we use both terms interchange-

ably to refer to the assumption in Equation 7.1.

At a first glance, it may seem that MAR bias would not pose a problem for den-

sity estimation: Because f(z|x) is the same for both labeled and unlabeled samples,

it appears reasonable that a good estimator of f(z|x) constructed using labeled data

also has good performance for unlabeled data. But this is generally not true — be-

cause the loss function for estimating f(z|x) as well as other quantities depends

on the marginal distribution of x. In other words: An estimator that is good with

respect to fL(x) might not be good with respect to fU(x). We will return to this

point in Section 7.3.2.

In non-parametric regression and classification, covariate shift is sometimes cor-

rected by the so-called importance weights β(x) := fU(x)/fL(x)1 (Sugiyama et al.

2008). In what follows (Section 7.3.2), we investigate the problem of how to best

estimate importance weights from data. Then (in Section 7.4), we explain how to in-

corporate importance weights into nonparametric conditional density estimation.

7.3.2 Estimating Importance Weights

In Chapter 5 we described some of the most common approaches of estimat-

ing the importance weights β(x). In astronomy, researchers have explored nearest

1 For the problem to be well-defined, PL(x) has to dominate PU(x), i.e., PL(x)� PU(x). This assumption

is necessary but does not alway hold in practice. In our work, we choose the photometric data so

that they have covariates in the same domain as the spectroscopic data (Section 7.2). A related and

complementary approach (Ball and Brunner 2010) is to first apply machine-learning techniques to

the unlabeled data that fall in the restricted domain and then extrapolate to data outside this region

by template methods.
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neighbor techniques for reweighting non-representative training samples. Lima

et al. (2008) and Cunha et al. (2009) suggest estimating β(x) with the following

nearest-neighbor estimator (which we denote by β-NN):

β̂(x) =
1

N

nL
nU

nU∑
k=1

I
(
xUk ∈ VNx

)
, (7.3)

where

VNx = {y ∈ Rd : d(y, x) 6 d(xL
(N), x)}

is the region of the feature space with points closer to x than xL
(N), the Nth nearest

neighbor of x in the labeled data.

Our ultimate goal is good photo-z prediction but it can be tricky to choose the

best method for estimating importance weights. The empirical loss of importance-

weighted learning algorithms depends on the accuracy of these estimates, i.e., on

the values β̂(x) themselves. As a result, one cannot simply choose the weighting

method that minimizes the empirical error of the final density estimates f̂(z|x). To

address this problem, here we employ a two-step approach: First, we select the best

estimator of β(x) using an appropriate loss (which is the topic of this section) and

then we use the estimated weights to select the best conditional density estimator.

As we shall see in Section 7.4, for importance-weighted statistical procedures, one

needs to have accurate estimates of β(x) at the labeled points, or more generally in

the regions of the feature space where the density of labeled points is large. It

follows that a natural loss function for a given estimator β(x) is

L(β̂,β) : =
∫ (
β̂(x) −β(x)

)2
dPL(x)

=

∫
β̂2(x)dPL(x) − 2

∫
β̂(x)dPU(x) +K (7.4)

where K is a constant that does not depend on β̂(x). Notice this is the same loss as

that we used for a ratio estimator in Section 5.2.1. Again, given a labeled validation
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sample x̃L1 , . . . , x̃LñL and an unlabeled validation sample x̃U1 , . . . , x̃UñU , we estimate

L(β̂,β) by

L̂(β̂,β) =
1

ñL

ñL∑
k=1

β̂2
(
x̃Lk
)
− 2

1

ñU

ñU∑
k=1

β̂
(
x̃Uk
)

. (7.5)

We choose the model that minimizes L(β̂,β) on a validation set. This provides a

principled and simple method for choosing tuning parameters in, for example, the

nearest neighbor method by Lima et al. (2008) and Cunha et al. (2009).

7.3.3 Variable Selection

Although β(x) may depend on all observable covariates x, selecting a subset of

covariates x0 to estimate it may produce better estimators because, as in standard

nonparametric regression (Wasserman 2006), this will lead to estimators with less

variance. Hence, variable selection can increase the performance of estimators of

the weights β(x)

We propose to perform variable selection for the importance weights by first

estimating β(x) using different subsets of covariates of x, and then, for each of

these, estimating loss (7.4) using Equation 7.5. We then pick the subset that leads

to the smallest estimated error. Because there are 210 subsets of covariates (the four

colors and r-band in both model and cmodel magnitude systems), we use a forward

stepwise-type model search (Hastie et al. 2001), starting with the estimator with

no covariates, β̂(x) ≡ 1.

7.3.4 Comparison of Estimators of β

We now compare six estimators of importance weights: β-NN denotes the near-

est neighbor estimator from Lima et al. (2008), but with the smoothing parameter

N chosen so as to minimize our proposed empirical loss function (Equation 7.5);

β-NN1 is the nearest neighbor approach with N = 1 as in Loog (2012); β-KLIEP

and β-uLSIF are the importance weight estimators suggested by Sugiyama et al.

(2008) and Kanamori et al. (2009), respectively, implemented using MATLAB code
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provided by the authors2. We also implement β-KuLSIF, a kernelized version of

β-uLSIF (Kanamori et al. 2012), and β-Series, the spectral series estimator from

Chapter 5.

Following Lima et al. (2008), our covariates are the colors and the r-band magni-

tude in the model magnitude system. We now present the results of the analyses,

and defer the discussion to the end of the section.

First, we use the simulated photo-z prediction setting to compare the perfor-

mance of the importance weights estimators. We use 10,000 labeled samples, and

an unlabeled sample of the same size. From each sample (labeled and unlabeled),

we randomly chose 2,800 data points for training, 1,200 for validation and 6,000

for testing. Figure 7.3 summarizes the results. Using the variable selection tech-

nique from Section 7.3.3 on the nearest neighbors estimator leads us to choose the

variables displayed in Table 7.1.
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(c) Scheme 3

Figure 7.3: Comparison of different estimators of importance weights β(x) for

varying degrees of covariate shift. The plots display the estimated loss

L̂(β̂,β). Bars correspond to mean plus and minus standard error.

2 http://sugiyama-www.cs.titech.ac.jp/~sugi/software

http://sugiyama-www.cs.titech.ac.jp/~sugi/software
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We now perform the same analyses on the SDSS photometric set. As Figure

7.1 shows, the shift in the covariates is large. Therefore, about 80% of the spectro-

scopic samples have β̂(x) = 0 (using β-NN). If these are not removed, they will

cause the effective sample size to decrease substantially, and hence lead to bad

conditional density estimates (see Section 7.4). In order to avoid this, we use a sim-

ilar procedure as suggested by Lima et al. (2008). We first randomly select 15,000

spectroscopic and 15,000 photometric samples to estimate β̂(x) using all model

magnitude covariates. We then randomly select 15,000 additional spectroscopic

samples in which β̂(x) 6= 0. The analyses we present, unless mentioned otherwise,

are based on this new spectroscopic sample and the original 15,000 photometric

samples. Figure 7.4 shows the distribution of the covariates in model magnitude

for the photometric and the spectroscopic sample. The shift is in fact smaller than

in Figure 7.1. We use 3,500 samples of each data set for training, 1,500 for valida-

tion and the remaining for testing. Notice this is a different set from that used in

Chapter 5, where we did not remove samples where β̂(x) = 0.

Table 7.1: Selected covariates for importance weights estimators for each dataset

(nearest neighbor estimator)

Dataset model cmodel

r u− g g− r r− i i− z r u− g g− r r− i i− z

Scheme 1 X

Scheme 2 X X X

Scheme 3 X X

SDSS X X X X X

We first reestimate the importance weights in the new spectroscopic set. Figure

7.5 shows the estimated losses of the methods for estimation of β(x) using all

covariates from model magnitude. The chosen variables for the nearest neighbors

estimator are displayed in the last row of Figure 7.1. The number of neighbors



110 Photometric Redshift Prediction under Selection Bias

chosen by minimizing Equation 7.5 was 8, not far from 5, the number used by

Cunha et al. (2009). The loss of the final importance weight estimator is -2.41 (±

0.08), smaller than -2.16 (± 0.05) from the model using all 10 covariates, and -1.97

(± 0.04) when using the 5 covariates from model magnitude only.
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Figure 7.4: Distribution of r-band model magnitude and the 4 colors from model

magnitude for the spectroscopic and photometric (SDSS) data sets after

removing samples with initial estimated importance weight 0. Compare

it to Figure 7.1; the distribution of the spectroscopic data indeed gets

closer to that of the photometric sample.
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Figure 7.5: Estimated losses of the estimators of importance weights β(x) for SDSS

data using all 5 covariates from model magnitude. Bars correspond to

mean plus and minus standard error.

Discussion. With cross-validated tuning parameters, β-NN and β-Series are the

methods of choice for these data. They dominate the other estimators both for the

SDSS photometric sample and for the three simulated selection bias schemes. In
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some cases, β-NN is even better than β-Series3. This result is especially note-worthy

as the nearest neighbor estimator has received little attention in the machine learn-

ing literature on data set shift.

Table 7.1 indicates our variable selection technique yields good results. In par-

ticular, for Scheme 1, where the weights do not depend on the covariate (they are

constant), only one covariate was selected; for Schemes 2 and 3, where the weights

depend only on model r-band, either this covariate or cmodel r-band was selected.

This makes sense, because model r-band has 0.99 correlation with cmodel r-band.

Moreover, the variable selection technique substantially increases the performance

of the estimator of the importance weights.

Through the rest of the paper, we will use the β-NN method to estimate impor-

tance weights. The next section explains how one can use these weights to improve

conditional density estimators under selection bias.

7.4 Conditional Density Estimation under Covariate Shift

We now switch the focus to the problem of estimating the conditional density

f(z|x), assuming an estimate of the weights β(x) has already been computed.

Typically, conditional density estimators are designed to minimize the loss∫∫ (
f̂(z|x) − f(z|x)

)2
dPL(x)dz (7.6)

where there is an implicit assumption that PL = PU. With labeled data, one can

directly estimate this loss (up to a constant) according to Chapter 4:

1

ñL

ñL∑
k=1

∫
f̂2
(
z|x̃Lk

)
dz− 2

1

ñL

ñL∑
k=1

f̂
(
z̃Lk|x̃

L
k

)
. (7.7)

However, if PL 6= PU, a problem arises. Minimizing the loss over labeled data

results in good estimates in high-density regions of the labeled data, whereas we

3 Notice, however, that for the example of Chapter 5, in which we use a smaller sample size and a

larger number of covariates, β-Series had better performance than β-NN.
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are really interested in good estimates in high-density regions of the unlabeled

target data. In other words, we seek estimators that minimize the loss

L(f̂, f) :=
∫∫ (

f̂(z|x) − f(z|x)
)2
dPU(x)dz (7.8)

with respect to PU instead of PL. But we do not know the z of the unlabeled

data. This is where the importance weights are helpful: Under the covariate shift

assumption fU(z|x) = fL(z|x), one can rewrite the modified loss (7.8) up to a con-

stant as

L(f̂, f) =
∫∫
f̂2(z|x)dPU(x)dz− 2

∫∫
f̂(z|x)f(z|x)dPU(x)dz

=

∫∫
f̂2(z|x)dPU(x)dz− 2

∫∫
f̂(z|x)β(x)dPL(z, x)dz.

(The last equality follows from fU(z|x)dPU(x) = fL(z|x)β(x)dPL(x) = β(x)dPL(z, x).)

Hence, in a setting with selection bias, we propose the empirical (reweighted) loss

function

L̂(f̂, f) =
1

ñU

ñU∑
k=1

∫
f̂2
(
z|x̃Uk

)
dz− 2

1

ñL

ñL∑
k=1

f̂
(
z̃Lk|x̃

L
k

)
β̂
(
x̃Lk
)

. (7.9)

This error estimate corrects for covariate shift and it can be computed from valida-

tion data that contain both labeled and unlabeled examples.

So how can we use this result in practice? In what follows, we present three

different conditional density estimators designed to work under covariate shift

(NNCS, ker-NNCS, and SeriesCS); these estimators all minimize the reweighted

empirical loss (7.9) on the validation data. Furthermore, in Section 7.4.4, we pro-

pose a general technique for combining two or more estimators to further decrease

the loss. For model selection and for choosing tuning parameters, we use (7.9) to-

gether with an estimate of β (Eqs. 7.3 and 7.5). However, to assess the density

estimators, we will for the simulated data examples (where we have access to the

true labels z̃U) use the more accurate error estimate

L̂(f̂, f) =
1

ñU

ñU∑
k=1

∫
f̂2
(
z|x̃Uk

)
dz− 2

1

ñU

ñU∑
k=1

f̂
(
z̃Uk |x̃

U
k

)
, (7.10)

which does not involve estimating β.
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7.4.1 Nearest Neighbor Histogram (NNCS)

In Cunha et al. (2009), the authors propose a weighted nearest neighbor his-

togram for estimating the redshift distribution of photometric galaxy samples. We

use the notation NNCS to denote their histogram method but with tuning param-

eters chosen according to our scheme. The details are as follows.

Suppose we want to estimate the density f(z|x) at a given point x. Let NN(x)

denote the set of N nearest neighbors of x in the labeled data. Divide [0, 1] into

B equal-sized bins, and let b(z) denote the bin that includes z for z ∈ [0, 1]. The

weighted nearest neighbor histogram is given by

f̂(z|x) ∝
∑

k∈NN(x)

β̂
(
xLk
)

I
(
zLk ∈ b(z)

)
.

The idea is to histogram the labeled examples {zLk : k ∈ NN(x)} that are close to x,

and assign a weight β̂(xLk) to each labeled example that reflects how representative

the example is of the target distribution.

In Cunha et al. (2009), the number of nearest neighbors N is set to 100, the num-

ber of bins B is chosen according to the application, and the importance weights

β̂(xLk) are the β-NN estimates in Equation 7.3 based on 5 neighbors of the labeled

point xLk. Here, we instead choose the tuning parameters that minimize an estimate

of the generalization error. We choose the parameters N and B that minimize the

empirical loss in Equation 7.9 for the validation data, and we use Equation 7.5 to

select the optimal number of nearest neighbors for estimating β̂(x).

7.4.2 Kernel Nearest Neighbor Estimator (ker-NNCS)

To further improve upon the estimator NNCS, we suggest using a smoothing

kernel Kε instead of a histogram. Hence, as an alternative to NNCS, we propose

the weighted kernel nearest neighbor estimator

f̂(z|x) ∝
∑

k∈NN(x)

β̂
(
xLk
)
Kε
(
z− zLk

)
.
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In this work, we choose a Gaussian kernel Kε(z− zk) = e−(z−zk)
2/4ε with band-

width ε. As before, we base our choice of tuning parameters on the estimated

generalization errors in (7.8) and (7.5). Note that setting β̂(x) ≡ 1 for all x ∈ X

corresponds to the traditional kernel nearest neighbors estimator not corrected for

selection bias (Zhao and Liu 1985); we denote this estimator by ker-NN.

7.4.3 Spectral Series CDE under Covariate Shift (SeriesCS)

We can also adapt the spectral series estimator for the selection bias setting. To

do that, here we use the labeled data to build the estimator, i.e., we use the labeled

data to build the Gram Matrix

GL =



K(xL1 , xL1) K(xL1 , xL2) · · · K(xL1 , xLnL)

K(xL2 , xL1) K(xL2 , xL2) · · · K(xL2 , xLnL)
...

...
. . .

...

K(xLnL , xL1) K(xLnL , xL2) · · · K(xLnL , xLnL)


,

and also to estimate the coefficients. However, we choose the tuning parameters

I, J, and ε that minimize an estimate of the loss in Eq. (7.8), which makes use

of the unlabeled data and is more appropriate to the selection bias setting. We

denote this importance-weighted spectral series estimator by SeriesCS. We denote

the estimator from Chapter 4 not corrected for covariate shift by Series. For both Series

and SeriesCS, we use the renormalization scheme from Section 4.2.2, as well as its

technique for removing spurious bumps for both estimators.

7.4.4 Combining Multiple Estimators (CombCS)

Finally, we present a simple procedure for combining, or stacking, multiple esti-

mators or models to further improve prediction performance. Suppose f̂1(z|x), . . . ,
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f̂p(z|x) are different (cross-validated) estimators of f(z|x). We define the combined

estimator, CombCS, as a weighted average

f̂α(z|x) =
p∑
k=1

αkf̂k(z|x).

The choice of weights is crucial. We compute the empirical loss L̂(f̂α, f) on the

validation data according to Eq. 7.9, and we seek the weights that minimize this

loss under the constraints αi > 0, ∀1, . . . ,p and
∑p
i=1 αi = 1. The optimal vector

weight vector α = [αi]
p
i=1 is the solution to a standard quadratic programming

problem:

arg min
α:αi>0,

∑p
i=1αi=1

α ′Bα− 2α ′b (7.11)

where B is the p×pmatrix
[
1
ñU

∑ñU
k=1

∫
f̂i(z|x̃Uk )f̂j(z|x̃

U
k )dz

]p
i,j=1

and b is the vector[
1
ñL

∑ñL
k=1 f̂i(z̃

L
k|x̃
L
k)β̂(x̃

L
k)
]p
i=1

.

7.4.5 Variable Selection

The same technique from Section 7.3.3 can be used to improve on estimators

of f(z|x): an estimator f̂(z|x0) built using any subset of covariates x0 can also be

regarded as an estimator of f(z|x). We also use forward stepwise-type model search

to select which covariate to use to estimate f(z|x), using Equation 7.9 to estimate

loss (7.8). We initialize the procedure with an estimate of the marginal distribution

f(z).

7.4.6 Goodness-of-fit

Although the techniques we developed so far allow one to pick the best model

among a set of candidates (using loss (7.8)), they do not indicate how reasonable

the final estimates are. Here we describe two goodness-of-fit techniques that can

give additional insights into these estimates. They are adaptations of the ideas

from Section 4.4 to the selection bias setting.
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Denote by F̂z|xi the estimated conditional cumulative distribution function for

z given the covariates xi. The first evaluation is based on building a QQPlot. For

each c in a grid of values in [0, 1] and each testing sample i, compute Qci = F̂
−1
z|xi

(c).

Define

ĉ =
1

n

n∑
i=1

β̂(xLi )I(z
L
i 6 Q

c
i ).

If the estimates of f(z|x) are reasonable, ĉ ≈ c. We plot a graph of ĉ’s versus c’s

and see how close they are to the diagonal.

The second diagnostic measure is a coverage plot. For each α in a grid of values

in [0, 1] and each testing sample i, let Ai be a set such that
∫
Ai
f̂(z|xi)dz = α. Here

we choose the set Ai with the smallest area (the Highest Density Region). Define

α̂i =
1

n

n∑
i=1

β̂(xLi )I(z
L
i ∈ Ai).

If the estimates of the conditional density are reasonable, α̂ ≈ α. We plot a graph

of α̂’s versus α’s and see how close they are to the diagonal.

These diagnostic measures are not enough to distinguish all bad estimates from

the good estimates. Nonetheless, they are useful to detect most bad estimates and

can be used as an additional tool to the methods developed here.

7.4.7 Comparison of Conditional Density Estimators

First, we use the simulated photo-z prediction setting to compare the perfor-

mance of the various estimators of f(z|x). We leave the discussion of the results to

the end of the section. As before, our covariates are the four colors and the r-band

magnitude in the model magnitude system. The weights β(x) are estimated using

the β-NN approach (Equation 7.3).

In total, we consider 7 density estimators: The first three methods do not take se-

lection bias into account. They are NN, the nearest neighbor estimator from Section

7.4.1 with uniform weights β̂(x) ≡ 1; ker-NN, the kernel nearest neighbor estimator

from Section 7.4.2 with uniform weights; and Series, the spectral series estimator

not corrected for covariate shift. The tuning parameters of these three estimators
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are chosen so as to minimize the empirical loss in Equation 7.7 over the labeled

examples in the validation set.

The next three estimators are NNCS, the nearest neighbors estimator from Sec-

tion 7.4.1; ker-NNCS, the kernel nearest neighbor estimator from Section 7.4.2; and

SeriesCS, the spectral series estimator corrected for covariate shift from Section

7.4.3. Finally, the last estimator is the combined estimator CombCS from Section

7.4.4 by choosing a linear combination of ker-NNCS and SeriesCS. The tuning pa-

rameters of these four estimators were chosen by minimizing the loss estimated in

Equation 7.9 for the validation data.
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(c) Scheme 3

Figure 7.6: Estimated losses of different density estimators in a simulated photo-

z prediction setting with (a) no, (b) moderate, and (c) large covariate

shifts. Bars correspond to mean plus and minus standard error.

We split the data into training, validation and testing as in Section 7.3.4. To as-

sess the performance of the cross-validated estimators, we compute the empirical

loss in Equation 7.10 for the testing data. Figure 7.6 summarizes the results on

the test data for the simulated photometric sets. We note that using exact instead

of estimated importance weights yield plots similar to 7.6. Hence we omit these
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results. For Scheme 1, the combined estimator gives average weight α = 0.96 to

SeriesCS; this number is 0.50 for Scheme 2 and 0.43 in Scheme 3. Using the vari-

able selection technique from Section 7.4.5 on the combined estimator leads us to

choose the variables displayed in Table 7.2.

Table 7.2: Selected covariates for conditional density estimation for each dataset

(combined estimator)

Dataset model cmodel

r u− g g− r r− i i− z r u− g g− r r− i i− z

Scheme 1 X X X X X X X X

Scheme 2 X X X X

Scheme 3 X X X X

SDSS X X X X

We now perform the same analyses on the SDSS photometric set. We split the

data into training, validation and testing as in Section 7.3.4. First, we show the

results if we do not remove samples where the estimated importance weight are 0

(recall Section 7.3.4). Results are displayed in Figure 7.7a, where we use all covari-

ates from model magnitude. On the other hand, Figure 7.7b shows the results if we

proceed as suggested in Section 7.3.4 and substitute such samples for new ones

where β̂(x) 6= 0. The last row of Table 7.2 shows the variables that were selected

under this scheme for the combined estimator. The loss of the final estimator was

-2.51 (±0.09), smaller than -2.36 (±0.10), the loss achieved by the combined estima-

tor using all 5 covariates from model magnitude. The weight given to SeriesCS was

α = 0.53. Finally, Figure 7.8 shows the goodness-of-fit tests of the final estimates

of the combined model using the selected covariates.
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(b) After removing β̂(x) = 0

Figure 7.7: Estimated losses of conditional density estimators. Left: we use the orig-

inal 15,000 spectroscopic samples. Right: we use 15,000 spectroscopic

samples in which the initial estimates of the importance weights (which

were then recomputed using the new sample) were different than zero.

Notice that these plots have different scales.
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Figure 7.8: Goodness-of-fit plots for the final model, after variable selection was

performed on the combined estimator.

Discussion. Our main findings are:

1. The kernel nearest-neighbor estimators (ker-NN and ker-NNCS) consistently

perform better than the nearest-neighbor histogram estimators (NN and NNCS,

respectively) for these data.

2. Kernel nearest neighbors, ker-NN, is remarkably robust to selection bias.
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3. The spectral series method is sensitive to selection bias — but once corrected

for covariate shift, SeriesCS is one of the best estimators. By combining ker-

NNCS and SeriesCS into CombCS we can improve the performance further.

Variable selection improves the results even more.

4. It is important to remove samples with estimated importance weight zero

(Figure 7.7); not taking selection bias into account leads to bad estimates.

The reason why ker-NN is so robust to selection bias is that, to use the ter-

minology of Zadrozny (2004), it is a local learner. If N(x0) is a sufficiently small

neighborhood of x0, then under covariate shift (7.2), it holds that

fL(z|x ∈ N(x0)) ≈ fU(z|x ∈ N(x0)).

The kernel nearest-neighbor estimator would then yield good density estimates

even without a correction for selection bias, because then f̂L(z|x ∈ N(x0)) ≈

f̂U(z|x ∈ N(x0)). For similar reasons, the histogram estimator NN is less robust

than ker-NN (although it is also a local learner): Smoothing by binning [0, 1] re-

quires a larger number of neighbors, and hence larger neighborhoods than smooth-

ing using a kernel for finite samples. For example, in Scheme 3 the number of

neighbors chosen via cross validation is 35 for NN compared to only 8 for ker-NN.

In these larger neighborhoods about a point x0, the above approximation may no

longer be valid.

From a statistical point of view, it is interesting that ker-NNCS has good perfor-

mance despite being extremely simple. As we saw in Chapter 4, conditional density

estimation has considered to be a hard problem even when there are as few as 3

covariates (Fan et al. 2009), and has motivated several approaches in the absence

of selection bias. We believe the good performance is because ker-NNCS is able to

adapt to the intrinsic dimensionality of the data. That is, it is able to automatically

find the lower dimensional structure on the 10 covariates, which are highly redun-

dant. It has been shown that this is in fact the case for nearest neighbors regression

(Kpotufe 2011).
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We also observe that while SeriesCS has better performance than ker-NNCS when

there is no selection bias (see results for Scheme 1, and also Chapter 4), they yield

similar results otherwise. This is possibly because, when labeled and unlabeled

sample are far from each other, the Nyström Extension of Equation (2.4) does not

yield very good estimates of the eigenfunctions on the unlabeled sample, as these

were built using the labeled data. A similar reason explains why using spectral se-

ries does not dominate nearest neighbors when estimating a density ratio: in order

to estimate the coefficients of the expansion, one needs to use the Nyström Exten-

sion to evaluate the basis on the unlabeled data, although the basis was estimated

using labeled data only. Notice this does not happen in the other spectral series

estimators. In Chapter 8 we discuss how one may proceed to avoid this problem.

It is also interesting that when there is selection bias, less variables are chosen

(Table 7.2). This is because the large covariate shift makes the effective sample size

smaller in Schemes 2) and 3) (essentially many labeled samples have weight zero;

see also discussion in Shimodaira 2000 and Gretton et al. 2010), and hence the

variance of the estimators are larger. This is exactly the reason why substituting

labeled samples with β̂(x) = 0 to samples where β̂(x) 6= 0 improves the results

substantially.

Finally, the QQPlot is reasonable for almost all percentiles, except in the tails,

which indicates that the fitted estimates have bigger tails than the real conditional

densities. This is in agreement with the coverage plot, which shows that the empir-

ical coverage is around 8% larger than the nominal one. This indicates that there

is still room for improvement on the final estimates.

As an illustration, in Figure 7.9 we display the final conditional density estimates

of six galaxies from the spectroscopic sample, along with the real redshifts and

estimated importance weights. We present the results from SeriesCS, ker-NNCS

and CombCS. It also shows the final conditional density estimates of six galaxies

from the photometric sample. As expected, most of the estimates are multimodal
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and asymmetric, indicating the regression E[Z|x] would not be a good summary

of these.
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Figure 7.9: Top: Examples of estimated densities on spectroscopic sample and es-

timated importance weights. Vertical lines indicate observed spectro-

scopic redshift. Bottom: Examples of estimated densities on photomet-

ric sample.

7.5 Example : Galaxy-Galaxy Lensing

As a proof-of-concept, in this section we apply the methods we develop to the

galaxy-galaxy weak lensing analysis from Sheldon et al. (2012). The goal is to

estimate the critical surface density, Σ(zl, zs), which determines the lensing strength

of a given lens-source pair, see Mandelbaum et al. (2008) for additional details.

More precisely, we need to estimate Σ−1(zl, zs) for a set of source galaxies with
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unknown redshifts zs’s. Here, zl is the desired lens redshift, assumed to be fixed.

A simple estimate is given by Σ−1(zl, ẑs), where ẑs is a point estimate of the source

galaxy redshift zs, typically obtained via regression. However, because E[g(Z)|x] 6=

g(E[Z|x]) (here, g(z) := Σ−1(zl, z)), the estimator

Σ̂−1(zl, zs) =
∫
Σ−1(zl, z)f̂(z|x)dz

usually yields better results if f̂(z|x) is a good estimate of f(z|x). We notice that

another interesting approach to estimate E[g(Z)|x] effectively is to directly regress

the variableW ≡ g(Z) on x: This also avoids the problem that E[g(Z)|x] 6= g(E[Z|x]).

Hence, we also implement an estimator of this type in the experiment that follows.

As in Sheldon et al. (2012), we use data from DEEP2 EGS Region (Weiner et al.

2005). Besides the estimators we described in this chapter (NN, ker-NN, Series, and

Comb), we also implement NN-7, the nearest neighbors estimators with 7 neighbors

(the value used by Sheldon et al. 2012 for this particular application), and Photo-z,

a nearest neighbors regression estimator of z. That is, Photo-z is simply a plug-in

estimator of the type g(ẑ). Finally, we also compute Series Reg., the spectral series

regression estimator of W ≡ g(Z) on x (i.e., contrary to Photo-z, Series Reg. is not a

plug-in estimator).

We evaluate the performance of these estimators via the measures defined by

Mandelbaum et al. (2008), named bias and variance ratio. We notice these are not

the standard definitions of bias and variance from statistics. Small values of bias

and large values of variance ratio indicate good performance. We use 500 samples

for training, 500 for validation, and 382 for testing.

Results are shown in Figure 7.10. We do not display the combined estimator

because it is essentially the same as Series in this case (α = 1).

We observe the following key facts:

• The plug-in-based estimator, Photo-z, has a large bias;
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• ker-NN has performance in between NN and Series, which is in agreement

with the analysis of Section 7.4.7: when there is no selection bias, Series has

best performance;

• In terms of bias, the estimators with best performance are Series, Series Reg.,

and NN-7;

• In terms of variance, the estimators with best performance are Series and

Series Reg.;

• Nearest neighbors with 7 neighbors performs better than that with 27 neigh-

bors, the value chosen via the technique described in Section 7.4. On the

other hand, 7 neighbors yields a bad density estimator (e.g., it does not have

good coverage, see Figure 7.10).

How can NN with 7 neighbors give better estimates of the critical surface density

than NN with 27 neighbors, which has better goodness-of-fit? The reason is that

estimating f(z|x) by NN and then computing
∫
g(z)f̂(z|x)dz is essentially equivalent

to estimating E[g(Z)|x] directly by performing nearest neighbors regression of W ≡

g(Z) on x, the same task performed by Series Reg. Hence, 7 yields a good regression

estimator of g(Z), but a bad density estimator. This is in agreement with the fact

that when tuning NN using the loss function for regression estimators (Chapter 3)

we recover the value 7. Moreover, overall Series Reg has better performance than

NN-7, which is in agreement with the results from Chapter 3.

These results suggest that one may consider directly regressing the response

of interest, g(z), on the photometric covariates as an alternative to performing

conditional density estimation. Nonetheless, this alternative procedure requires a

new tuning of parameters for each g of interest; for example, other numbers than 7

will be optimal depending on the function one is estimating: Generally, smoother

functions will requires a larger k for optimality. On the other hand, estimating the

conditional density requires the tuning to be performed only once.
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Figure 7.10: Galaxy-galaxy lensing using DEEP2. Scaled Variance Ratio is Variance

Ratio normalized to be have minimum at 0 and maximum at 1. Series

and Series-Reg yield estimates with smaller biases and variances than

the other approaches. Using 7 neighbors for NN as in Sheldon et al.

(2012) yields similar performance in terms of bias, however it gives

unreasonable density estimates.

7.6 Conclusions

Here, we proposed and analyzed non-parametric methods for estimating condi-

tional densities under selection bias. More specifically, we worked with the Missing

at Random assumption in the context of photometric redshift prediction.
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To match training (spectroscopic) and target (photometric) samples, we used

a reweighting scheme based on importance weights. We found that the nearest

neighbors estimator developed in Cunha et al. (2009) is very effective for estimat-

ing these weights, even when compared to state-of-the-art approaches of density

ratio estimation from the machine learning literature. We provided a principled

way of choosing the tuning parameter of the importance weight estimator, and in-

troduced two new conditional density estimators, kernel nearest neighbors (Section

7.4.2) and Series (Section 7.4.3), both with better performance than the photo-z pre-

diction method by Cunha et al. (2009). We found that the kernel nearest neighbors

estimator is relatively robust to departures from i.i.d. situations even when not

corrected for selection bias. When taking selection bias into account, the kernel

nearest neighbors and the spectral series estimators yield similar performance. We

proposed principled ways of tuning their parameters under selection bias, and we

described how to combine two or more estimators for optimal performance. In

particular, we saw that such procedures lead to better inference on galaxy-galaxy

lensing problems. We also proposed a scheme for variable selection when estimat-

ing importance weights and conditional densities. Most likely, variable selection

will be essential in next-generation surveys that include additional covariates (e.g.,

surface brightness or sizes of galaxies, Lima et al. 2008, or other magnitudes such

as grizYJHKs, Oyaizu et al. 2008).

In summary, for our study of SDSS galaxy data, we found that the following

procedure gave the best photo-z estimates: First, compute initial estimates of the

importance weights β(x) using nearest neighbors (Section 5.4). Then, to increase

the effective sample size, remove data points where the estimated weights β̂(x) are

zero, substituting them for new samples with β̂(x) 6= 0, and reestimate the impor-

tance weights. Finally, to estimate the redshift distribution f(z|x) under selection

bias, use the technique from Section 7.4.4 to combine the weighted kernel nearest

neighbors and spectral series estimators (ker-NNCS and SeriestCS, respectively)

into a final estimator CombCS. For optimal performance, use the variable selec-
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tion scheme in Sections 7.3.3 and 7.4.5 to decide which covariates to include in the

estimation of both β(x) and f(z|x).

The goodness-of-fit techniques we propose indicate that the final conditional

density estimates are reasonable on SDSS data, but that there is still room for im-

provement. We expect that one would be able to achieve even better results by

using larger sample sizes as well as by aggregating more conditional density esti-

mators. One could also iterate the procedure of removing samples where β(x) = 0.

Finally, although the scope of this chapter is conditional density estimation,

taking into account selection bias is also important for regression. Much of the

proposed work can directly be adapted to regression estimators of, for example,

photometric redshift as the regression function E[Z|x] =
∫
zf(z|x)dx.
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C O N C L U S I O N S A N D F U T U R E W O R K

In this thesis we developed a general nonparametric framework for estimating

functions defined on a high-dimensional space. The method is based on expanding

the function of interest using spectral bases, the eigenfunctions of a kernel-based

operator. We applied this technique to four distinct problems, and saw several

examples where it yields estimates comparable to or better than those from state-

of-the-art techniques. We also saw that the spectral bases adapt to the domain of

the data, yielding improved rates when data live on a space with small intrinsic

dimensionality but is embedded in a high-dimensional space. In particular, we

showed that if a function is smooth with respect to the data distribution, we only

need the first few eigenfunctions to approximate it well, i.e., smoothness implies

a sparse representation for the spectral basis. Moreover, we saw that, for many

problems, spectral series methods have better computational properties than com-

peting methods, one of the reasons being the orthogonality of the eigenfunctions

with respect to the data distribution. Additionally, we discussed improvements

that make the estimators scale to larger datasets with almost no loss in accuracy.

We saw that the spectral series method is also very flexible: It can handle different

data types well, and it can also make use of unlabeled data in a semi-supervised

learning setting. Moreover, it automatically provides basis functions that can be

used for data visualization. Finally, we presented a real application to the problem
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of photometric redshift prediction, where the methods we develop lead to more

accurate inference than traditional approaches.

8.1 Future Work

The methodology we developed in this thesis motivates several interesting fu-

ture directions.

8.1.1 Confidence Bands

First, it would be desirable to construct confidence sets for the estimates given by

the spectral series method. This is of particular interest on the likelihood estimation

problem, where having such estimates may be a first step towards quantifying

the level of approximation on the inferences. This would represent a substantial

advantage over standard ABC methods, where it is typically hard to quantify such

uncertainties.

A first step towards building confidence bands over spectral series estimators is

to notice they are linear smoothers. Consider for example the regression estimator

with Kernel PCA basis (see Chapter 3). Then,

r̂(x) =
I∑
i=1

β̂iYi =

I∑
i=1

(
1

n

n∑
k=1

ψ̂i(xk)ψ̂i(x)

)
Yi =

n∑
k=1

(
1

n

I∑
i=1

ψ̂i(xk)ψ̂i(x)

)
Yi =

=

n∑
k=1

li(x)Yi,

where li(x) = n−1
∑I
i=1 ψ̂i(xk)ψ̂i(x). One may then use the techniques discussed

in Chapter 5 of Wasserman (2006) and in Sun and Loader (1994) to build bands

with the desired coverage for E[̂r(x)].

8.1.2 Spectral Series Estimators and Selection Bias

As we saw in Chapters 3, 4 and 7, the spectral series estimator typically yields

better estimates than nearest neighbors methods. However, when there is selection
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bias, they give similar results. As we discussed, this is possibly because in this

case the Nyström extension of the basis to the testing samples is not very precise,

mainly because the basis is build using the labeled sample, which is far from

the unlabeled one. A solution to this may be to use both samples to estimate the

basis. More specifically, one might build (ψj(x))j sampling from the population

γPU(x) + (1− γ)PL(x), where γ can be chosen by minimizing the estimated loss.

Then, in the context of the conditional density estimation problem, the coefficients

of the expansion would be given by

βi,j =

∫∫
φi(z)ψj(x)f(z|x)d (γPU(x) + (1− γ)PL(x))

= γ

∫∫
φi(z)ψj(x)f(z|x)PU(x) + (1− γ)

∫∫
φi(z)ψj(x)f(z|x)dPL(x)

= γEL[φi(Z)ψj(X)β(X)] + (1− γ)EL[φi(Z)ψj(X)],

which can be estimated using the ideas presented in Chapter 7. Similar ideas can

be used to improve the spectral series estimator of a density ratio (Chapter 5).

8.1.3 Rates of Convergence

From a theoretical perspective, an interesting question is whether our bounds

for spectral series methods – which are of order n−1/O(p2) when there is finite

unlabeled data1 – can be improved to n−1/O(p). We believe the answer is yes, with

one of the reasons being that although the nearest neighbors regression estimator

has a rate of the form n−1/O(p) (Kpotufe 2011), spectral series typically has better

performance in our experiments. One way to achieve improved bounds may be

to use the fact that we empirically observe that the eigenfunctions of the kernel

operators are better estimated on the sample points. If this is indeed the case, the

current bounds on the estimated coefficients are too conservative: To estimate the

coefficients it is not necessary to use the Nyström extension, although we do not

make use of this in the proofs we present in the appendices. Hence, having better

bounds for ψ̂j(x)’s on the sample points may lead to improved rates. A second

1 Recall that p is the intrinsic dimension of the data.
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path that may lead one to achieve better bounds is to note that the ψ̂j’s are still a

basis of functions (in a broad sense) even if they are not close to ψj.

Still regarding the adaptation of our method to low-dimensional structure, an

interesting question is whether assuming data live close to a submanifold of the

original space still yields improved bounds. Similarly, it would be desirable to

evaluate if improved rates can be obtained under more general assumptions on

the data domain.

8.1.4 Other Applications of Spectral Series

Finally, it would be interesting to investigate how to apply the spectral series

method to other statistical problems. An interesting application may be to smooth

tests (Neyman 1937; Kallenberg and Ledwina 1997; Bera and Ghosh 2002), where

one typically uses a one-dimensional Fourier basis, or Lagrange polynomials. Spec-

tral series may allow such tests to be extended to higher dimensions. One way

this can be done is by using density ratio estimation (Chapter 5). More precisely,

assume

X1, . . . , Xn
i.i.d.∼ F,

and say we are interested in testing the hypothesis H0 : F = F0. Assume we are

able to sample from F0, and that F�F0�λ, where λ is the Lebesgue measure. Then

H0 is equivalent to

H0 :
f(x)
f0(x)

≡ 1.

Now, let (ψ̂i)i be the estimated diffusion spectral basis (see Section 2.2.4 for details;

here, for simplicity, we omit in the notation the dependence of the basis and related

quantities on ε), estimated using a simulated sample from F0. Let

f(x)
f0(x)

=
∑
i

βiψi(x),

where

βi =

∫
f(x)
f0(x)

ψi(x)dS(x) =
∫
f(x)
f0(x)

ψi(x)s(x)dF0(x) = EF[ψi(X)s(X)].
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The key for adapting the smooth testing to this framework is to recall that, for the

diffusion basis, ψ0(x) = ψ̂0(x) ≡ 1. Hence, the hypothesis H0 can be rewritten as

H0 : ∀i > 0, βi = 0.

This motivates the use of the test statistic

T =

I∑
i=1

β̂2i ,

where β̂i is the estimated projection coefficient on the eigenfunction i, given by

β̂i =
1

n

n∑
k=1

ψ̂i(xk)ŝ(xk).

One would then reject the null when T > K, where K is chosen so that the test has

the desired level α. The cutoff K can be chosen by sampling from F0. This yields

a simple procedure for performing smooth tests in sample spaces with more than

one dimension.

As an illustration, the left plot of Figure 8.1 shows the power function of this test

for testing H0 : µ = 0 given a sample X1, . . . ,X50
i.i.d.∼ N(µ, 1) for a fixed α = 5%.

We use sample of size 5,000 to estimate the basis, an expansion with I = 5 terms,

and a bandwidth

ε = mediani,j
(
d2(X ′i,X

′
j)/4

)
,

where X ′1, . . . ,X ′5000 is the sample used to estimate the basis functions. We also

include a comparison with the data-driven smooth test from Kallenberg and Led-

wina (1997) (Neyman’s smooth test),2 and with the likelihood ratio test (the Z test).

We observe that the spectral series smooth test has power comparable to that of the

traditional smooth test. Moreover, as expected, its power is inferior to the Z-test,

because the latter assumes a parametric form for the likelihood function. A similar

phenomenon happens in the right plot of that figure, where we test the hypothesis

that H0 : µ = (0, 0, 0) based on 150 samples from three dimensional Gaussian with

covariance matrix equals to the identity. The power is plotted as a function of the

2 We use the package ddst from R, http://cran.fhcrc.org/web/packages/ddst

http://cran.fhcrc.org/web/packages/ddst
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mean vector µ = (µ,µ,µ). Notice that because the sample space has dimension

three, it is not possible to use the traditional smooth test for this problem.

Some aspects to be investigated are:

• How to choose the truncation point I?

• How to choose the bandwidth ε?

• How to adapt this framework to test composite hypotheses?

• What are the power properties of this test? In particular, how does it compare

to other tests from the literature?
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Figure 8.1: Power curves of tests for the mean of a Gaussian. Significance levels

are α = 5% for all the tests. Left: x ∈ R. Right: x ∈ R3. The Z test is

more powerful, however it assumes a parametric form for the likelihood

function. On the other hand, the standard adaptive Neyman smooth

test has power comparable to that obtain via spectral series.

A second possible application is to inverse problems (O’Sullivan 1986; Wasser-

man 2006). Here, traditional solutions use Fourier basis or wavelets to expand the

regression function (Donoho and Johnstone 1995; Abramovich and Silverman 1998;

Abramovich et al. 2000). Spectral series may offer a natural extension to higher di-

mensional spaces.
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A
A P P E N D I X : B O U N D S O N T H E R E G R E S S I O N E S T I M AT O R

We start by stating some useful lemmas.

Lemma A.1. ∀x ∈ X,
a

b
6 sε(x) 6

b

a

Proof. ∀x ∈ X,
infx∈X pε(x)
supx∈X pε(x)

6 sε(x) 6
supx∈X pε(x)
infx∈X pε(x)

,

where a
∫
XKε(x, y)dy 6 pε(x) 6 b

∫
XKε(x, y)dy.

Lemma A.2. For g ∈ L2(X,P),

Lbias 6
b

a

∑
j>J

|βε,j|
2.

Proof. From the orthogonality property of the basis functions ψj, we have that∫
X

|g(x) − gε,J(x)|2dSε(x) =
∑
j>J

|βε,j|
2.

The result follows from Lemma A.1.

Lemma A.3. (Coifman and Lafon, 2006, Proposition 3) For g ∈ C3(X) and x ∈ X \ ∂X,

− lim
ε→0

G∗ε = 4.

If X is a compact C∞ submanifold of Rd, then4 is the psd Laplace-Beltrami operator of X

defined by 4g(x) = −
∑r
j=1

∂2g

∂s2j
(x) where (s1, . . . , sr) are the normal coordinates of the

tangent plane at x.
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Lemma A.4. Under the same assumptions as in Proposition A.1, it holds that

‖ϕε,j − ϕ̂ε,j‖L2(X,P) = OP

(
γn

δε,j

)
,

where γn =

√
log(1/εn)

nε
d/2
n

and δε,j = λε,j − λε,j+1.

Proof. From Giné and Guillou (2002), supx |p̂ε(x) − pε(x)| = OP(γn). Hence,

sup
x

|ŝε(x) − sε(x)| = OP(γn).

By using Proposition A.1, we conclude that∫
X

|ψ̂ε,j(x)|2dP(x) 6 2
∫
X

|ψ̂ε,j(x)−ψε,j(x)|2dP(x)+2
∫
X

|ψε,j(x)|2dP(x) = OP

(
γ2n
δ2ε,j

)
+C,

where C is a constant. Write

|ϕε,j(x) − ϕ̂ε,j(x)|2 = |ψε,j(x)sε(x) − ψ̂ε,j(x)ŝε(x)|2

6 2|ψε,j(x) − ψ̂ε,j(x)|2|sε(x)|2 + 2|sε(x) − ŝε(x)|2|ψ̂ε,j(x)|2.

Hence,

‖ϕε,j − ϕ̂ε,j‖2L2(X,P) 6 2 sup
x

|sε(x)|2 ‖ψ̂ε,j −ψε,j‖2L2(X,P) + 2 sup
x

|ŝε(x) − sε(x)|2 ‖ψ̂ε,j‖2L2(X,P)

= OP

(
γ2n
δ2ε,j

)
+OP(γ

2
n)

(
OP

(
γ2n
δ2ε,j

)
+C

)

= OP

(
γ2n
δ2ε,j

)
.

Lemma A.5. ∀0 6 j 6 J, it holds that∣∣∣∣∣ 1n
n∑
i=1

Yi(ϕ̂ε,j(Xi) −ϕε,j(Xi)) −
∫
X

r(x)(ϕ̂ε,j(x) −ϕε,j(x))dP(x)

∣∣∣∣∣ = OP
(
1√
n

)
.

Proof. Let S = 1
n

∑n
i=1 Yi(ϕ̂ε,j(Xi)−ϕε,j(Xi)) and I =

∫
X r(x)(ϕ̂ε,j(x)−ϕε,j(x))dP(x).

According to Chebyshev’s inequality, for any M > 0,

P
(
|S− I| >M | X̃1, . . . , X̃n

)
6

V
(
S− I|X̃1, . . . , X̃n

)
M2

6
V
(
Y1(ϕ̂ε,j(X1) −ϕε,j(X1))

∣∣ X̃1, . . . , X̃n
)

nM2
.
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Hence, for any M > 0,

P (|S− I| >M) 6
V
(
Y1(ϕ̂ε,j(X1) −ϕε,j(X1))

)
nM2

6
σ

nM2

(
E|ϕ̂ε,j(X1) −ϕε,j(X1)|2

)1/2
,

where we in the last inequality apply Cauchy-Schwartz. Under assumption (A4),

we conclude the result of the lemma.

a.1 Bias

Proof of Proposition 3.1. Note that Jε(g) =
∑
j ν
2
ε,j|βε,j|

2. Hence,

Jε(g)

ν2ε,J+1
=
∑
j

ν2ε,j

ν2ε,J+1
|βε,j|

2 >
∑
j>J

ν2ε,j

ν2ε,J+1
|βε,j|

2 >
∑
j>J

|βε,j|
2 =

∫
X
|g(x)−gε,J(x)|2dSε(x).

The last result follows from Lemma A.2. �

Proof of Lemma 3.1. By Green’s first identity∫
X

g ∇2gdS(x) +
∫
X

∇g · ∇gdS(x) =
∮
∂X

g(n · ∇g)dS(x) = 0,

where n is the normal direction to the boundary ∂X, and the last surface integral

vanishes due to the Neumann boundary condition. It follows from Lemma A.3

that

lim
ε→0

J∗ε(g) = − lim
ε→0

∫
X

g(x)G∗εg(x)dSε(x) =
∫
X

g(x)4g(x)dS(x) =
∫
X

‖∇g(x)‖2dS(x).�

Proof of Theorem 3.1. We have that

c2 >
∫
X

‖∇g(x)‖2dS(x) =
∫
X

g(x)4g(x)dS(x) =
∑
j

ν2jβ
2
j ,

where ν2j = O(j2s). Hence, g ∈ WB(s, c) and by Theorem 9.1 in Mallat (2009),

‖g− gJ‖2 = o(J−2s). �
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a.2 Variance

One can view the matrix Aε (defined in Equation 2.6) as a perturbation of the

integral operator Aε due to finite sampling. We would like to bound the difference

ψε,j − ψ̂ε,j, where ψε,j are the eigenvectors of Aε, and ψ̂ε,j are the Nyström ex-

tensions (Eq. 2.9) of the eigenvectors of Aε. One strategy proposed by Rosasco

et al. (2010) is to introduce two new integral operators that are related to Aε

and Aε, but that both act on an auxiliary1 RKHS H of smooth functions. Define

AH, ÂH : H→ H where

AHf(x) =

∫
Kε(x,y)〈f,K(·,y)〉HdP(y)∫

Kε(x, y)dP(y)
=

∫
aε(x, y)〈f,K(·,y)〉H dP(y)

ÂHf(x) =

∑n
i=1 Kε(x,Xi)〈f,K(·,Xi)〉H∑n

i=1 Kε(x,Xi)
=

∫
âε(x, y)〈f,K(·,y)〉H dP̂n(y),

and K is the reproducing kernel of H. Define the following operator norm: ‖A‖H

= supf∈H ‖Af‖H/‖f‖H where ‖f‖2H = 〈f, f〉H. Now suppose the weight function

Kε is sufficiently smooth with respect to H (Assumption 1 in Rosasco et al. 2010);

this condition is for example satisfied by a Gaussian kernel on a compact support

X. By Propositions 13.3 and 14.3 in Rosasco et al. (2010), we can then relate the

functions ψε,j and ψ̂ε,j, respectively, to the eigenfunctions uε,j and ûε,j of AH and

ÂH. We have that

‖ψε,j − ψ̂ε,j‖L2(X,P) = C1‖uε,j − ûε,j‖L2(X,P) 6 C2‖uε,j − ûε,j‖H (A.1)

for some constants C1 and C2. According to Theorem 6 in Rosasco et al. (2008) for

eigenprojections of positive compact operators, it holds that

‖uε,j − ûε,j‖H 6
‖AH − ÂH‖H

δε,j
, (A.2)

where δε,j is proportional to the eigengap λε,j − λε,j+1. As a result, we can bound

the difference ‖ψε,j − ψ̂ε,j‖L2(X,P) by controlling the deviation ‖AH − ÂH‖H.

1 This auxiliary space only enters the intermediate derivations and plays no role in the error analysis

of the algorithm itself.
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We choose the auxiliary RKHS H to be a Sobolev space with a sufficiently high

degree of smoothness so that certain assumptions ((A5)-(A6) below) are fulfilled.

Let Hs denote the Sobolev space of order s with vanishing gradients at the bound-

ary; that is, let

Hs = {f ∈ L2(X) | Dαf ∈ L2(X) ∀|α| 6 s, Dαf|∂X = 0 ∀|α| = 1},

whereDαf is the weak partial derivative of fwith respect to the multi-index α, and

L2(X) is the space of square integrable functions with respect to the Lebesgue mea-

sure. Let C3b(X) be the set of uniformly bounded, three times differentiable func-

tions with uniformly bounded derivatives whose gradients vanish at the boundary.

Now suppose that H ⊂ C3b(X) and that

(A5) ∀f ∈ H, |α| = s, Dα(ÂHf−AHf) = ÂHD
αf−AHD

αf,

(A6) ∀f ∈ H, |α| = s, Dαf ∈ C3b(X).

Under assumptions (A1)-(A6), we have

Lemma A.6. Let εn → 0 and nεd/2n / log(1/εn)→∞. Then ‖AH− ÂH‖H = OP(γn),

where γn =

√
log(1/εn)

nε
d/2
n

.

Proof. Uniformly, for all f ∈ C3b(X), and all x in the support of P,

|Aεf(x) − Âεf(x)| 6 |Aεf(x) − Ãεf(x)|+ |Ãεf(x) − Âεf(x)|

where Ãεf(x) =
∫
âε(x, y)f(y)dP(y). From Giné and Guillou (2002),

sup
x

|p̂ε(x) − pε(x)|
|p̂ε(x)pε(x)|

= OP(γn).

Hence,

|Aεf(x) − Ãεf(x)| 6
|p̂ε(x) − pε(x)|
|p̂ε(x)pε(x)|

∫
|f(y)|kε(x, y)dP(y)

= OP(γn)

∫
|f(y)|Kε(x, y)dP(y)

= OP(γn).

Next, we bound Ãεf(x) − Âεf(x). We have

Ãεf(x) − Âεf(x) =

∫
f(y)âε(x, y)(dP̂n(y) − dP(y))

=
1

p(x) + oP(1)

∫
f(y)Kε(x, y)(dP̂n(y) − dP(y)).
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Now, expand f(y) = f(x)+ rn(y) where rn(y) = (y− x)T∇f(uy) and uy is between

y and x. So,∫
f(y)Kε(x, y)(dP̂n(y) − dP(y)) =

f(x)
∫
Kε(x, y)(dP̂n(y) − dP(y)) +

∫
rn(y)Kε(x, y)(dP̂n(y) − dP(y)).

By an application of Talagrand’s inequality to each term, as in Theorem 5.1 of Giné

and Koltchinskii (2006), we have∫
f(y)Kε(x, y)(dP̂n(y) − dP(y)) = OP(γn).

Thus, supf∈C3b(X) ‖Âεf−Aεf‖∞ = OP(γn).

The Sobolev space H is a Hilbert space with respect to the scalar product

〈f,g〉H = 〈f,g〉L2(X) +
∑
|α|=s

〈Dαf,Dαg〉L2(X).

Under assumptions (A5)-(A6),

sup
f∈H:‖f‖H=1

‖Âεf−Aεf‖2H 6 sup
f∈H

∑
|α|6s

‖Dα(Âεf−Aεf)‖2L2(X)

=
∑
|α|6s

sup
f∈H
‖ÂεDαf−AεDαf‖2L2(X)

6
∑
|α|6s

sup
f∈C3b(X)

‖Âεf−Aεf‖2L2(X) 6 C sup
f∈C3b(X)

‖Âεf−Aεf‖2∞.

for some constant C. Hence,

sup
f∈H

‖Âεf−Aεf‖H
‖f‖H

= sup
f∈H,‖f‖H=1

‖Âεf−Aεf‖H 6 C ′ sup
f∈C3b(X)

‖Âεf−Aεf‖∞ = OP(γn).

For εn → 0 and nεd/2n / log(1/εn)→∞, it then holds that:

Proposition A.1. ∀0 6 j 6 J,

‖ψε,j − ψ̂ε,j‖L2(X,P) = OP

(
γn

δε,j

)
,

where δε,j = λε,j − λε,j+1.
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Proof. From Lemma A.1 and Equation A.2, we have that

‖ψε,j − ψ̂ε,j‖ε 6
√
b

a
‖ψε,j − ψ̂ε,j‖L2(X,P) 6 C

‖AH − ÂH‖H
λε,j − λε,j+1

for some constant C that does not depend on n. The result follows from Lemma A.6.

Using this, we can then bound the estimated coefficients.

Lemma A.7. ∀0 6 j 6 J,

|β̂ε,j −βε,j|
2 = OP

(
1

n

)
+OP

(
γ2n
δ2ε,j

)
.

Proof. Note that ψε,j(x)sε(x) = ϕε,j(x) and

β̂ε,j =
1

n

n∑
i=1

Yiψ̂ε,j(Xi)ŝε(Xi)

=
1

n

n∑
i=1

Yiϕε,j(Xi) +
1

n

n∑
i=1

Yi
(
ϕ̂ε,j(Xi) −ϕε,j(Xi)

)
= βε,j +OP

(
1√
n

)
+
1

n

n∑
i=1

Yi
(
ϕ̂ε,j(Xi) −ϕε,j(Xi)

)
.

Let S = 1
n

∑n
i=1 Yi

(
ϕ̂ε,j(Xi) −ϕε,j(Xi)

)
and I =

∫
X r(x)(ϕ̂ε,j(x) −ϕε,j(x))dP(x).

We conclude that

1

2
|β̂ε,j −βε,j|

2 6 OP

(
1

n

)
+ |S− I|2 + |I|2

6 OP

(
1

n

)
+ |S− I|2 +

(∫
X

|r(x)|2dP(x)
)(∫

X
|ϕε,j(x) − ϕ̂ε,j(x)|2dP(x)

)
= OP

(
1

n

)
+OP

(
γ2n
δ2ε,j

)
,

where the second inequality follows from Cauchy-Schwartz, and the last equality

is due to Lemmas A.5 and A.4. �

We can now prove Proposition 3.2:
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Proof. Let r̃ε,J(x) =
∑J
j=0 βε,jψ̂ε,j(x). Write

|rε,J(Xi) − r̂ε,J(Xi)|2 = |rε,J(Xi) − r̃ε,J(Xi) + r̃ε,J(Xi) − r̂ε,J(Xi)|2

6 2|rε,J(Xi) − r̃ε,J(Xi)|2 + 2|r̃ε,J(Xi) − r̂ε,J(Xi)|2

We bound the contribution to Lvar from each of these two terms separately:

By using Cauchy’s inequality and Proposition A.1, we have that

∫
X

|rε,J(x) − r̃ε,J(x)|2dP(x) =
∫
X

∣∣∣∣∣∣
J∑
j=0

βε,j(ψε,j(x) − ψ̂ε,j(x))

∣∣∣∣∣∣
2

dP(x)

6

 J∑
j=0

|βε,j|
2

 · J∑
j=0

(∫
X
|ψε,j(x) − ψ̂ε,j(x)|2dP(x)

)
= J OP

(
γ2n
∆2ε,J

)
.

By construction, it holds that 1n
∑
i ψ̂ε,j(X̃i)ψ̂ε,`(X̃i)ŝε(X̃i) = δj,`. Furthermore,∫

X

ψ̂ε,j(x)ψ̂ε,`(x)dŜε(x) =
1

n

∑
i

ψ̂ε,j(Xi)ψ̂ε,`(Xi)ŝε(Xi) +OP

(
1√
n

)
=

1

n

∑
i

ψ̂ε,j(X̃i)ψ̂ε,`(X̃i)ŝε(X̃i) +OP

(
1√
n

)
= δj,` +OP

(
1√
n

)
.

for a sample X1, . . . , Xn drawn independently from X̃1, . . . , X̃n. Finally, from the

orthogonality property of the ψ̂ε,j’s together with Lemmas A.7 and A.1, it follows

that

∫
X

|r̃ε,J(x) − r̂ε,J(x)|2dP(x) =
∫
X

1

ŝε(x)

∣∣∣∣∣∣
J∑
j=0

(βε,j − β̂ε,j)ψ̂ε,j(x)
√
ŝε(x)

∣∣∣∣∣∣
2

dP(x)

=

∫
X

1

ŝε(x)

 J∑
j=0

(βε,j − β̂ε,j)
2ψ̂2ε,j(x)dŜε(x)


+

∫
X

1

ŝε(x)

 J∑
j=0

J∑
`=0,` 6=j

(βε,j − β̂ε,j)(βε,` − β̂ε,`)ψ̂ε,j(x)ψ̂ε,`(x)dŜε(x)


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6
b

a

J∑
j=0

(βε,j − β̂ε,j)
2

(∫
X

ψ̂2ε,j(x)dŜε(x)
)

+
b

a

J∑
j=0

J∑
`=0,` 6=j

(βε,j − β̂ε,j)(βε,` − β̂ε,`)

(∫
X

ψ̂ε,j(x)ψ̂ε,`(x)dŜε(x)
)

=
b

a

J∑
j=0

(βε,j − β̂ε,j)
2

(
1+OP

(
1√
n

))

+
b

a

J∑
j=0

J∑
`=0,` 6=j

(βε,j − β̂ε,j)(βε,` − β̂ε,`) OP

(
1√
n

)

= J

(
OP

(
1

n

)
+OP

(
γ2n
∆2ε,J

))
.

The result follows.

We now prove of Corollary 3.2.

Proof. The results of Coifman and Lafon (2006) and Giné and Koltchinskii (2006)

form the basis of our Lemma A.3 and Lemma A.6. Because their results apply to

the p-dimensional submanifold case, the term γn =

√
log(1/εn)

nε
d/2
n

in our derivations

becomes γn =

√
log(1/εn)

nε
p/2
n

. Furthermore, the eigenvalues of the Laplace-Beltrami

operator 4 on an p-dimensional Riemannian manifold are ν2j ∼ j2/p (Safarov and

Vassilev 1997). Under the given assumptions, we then have that

L(r, r̂) = O
(

1

J2/p

)
+

J

(J+ 1)2/p − J2/p
OP

(
logn
n

) 2
p+4

.

Using the mean- value theorem, one can show that J
(J+1)2/p−J2/p

= O(J2(1−1/p)).

The main result follows.





B
A P P E N D I X : B O U N D S O N T H E C O N D I T I O N A L D E N S I T Y

E S T I M AT O R

We now present the proofs for the bounds from Chapter 4.

To simplify the proofs, we assume the functions ψ1, . . . ,ψJ are estimated using

an unlabeled sample X̃1, . . . , X̃m, drawn independently from the sample used to

estimate the coefficients βi,j. Without loss of generality, this can be achieved by

splitting the labeled sample in two. This split is only for theoretical purposes; in

practice using all data to estimate the basis leads to better results. The technique

also allows us to derive bounds for the semi-supervised learning setting described

in the paper, and better understand the additional cost of estimating the basis.

Define the following quantities:

fI,J(z|x) =
I∑
i=1

J∑
j=1

βi,jφi(z)ψj(x), βi,j =

∫∫
φi(z)ψj(x)f(z, x)dxdz

f̂I,J(z|x) =
I∑
i=1

J∑
j=1

β̂i,jφi(z)ψ̂j(x), β̂i,j =
1

n

n∑
k=1

φi(zk)ψ̂j(xk)

and note that ∫∫ (
f̂I,J(z|x) − f(z|x)

)2
dP(x)dz

6
∫∫ (

f̂I,J(z|x) − fI,J(z|x) + fI,J(z|x) − f(z|x)
)2
dP(x)dz

6 2
(
VAR(f̂I,J, fI,J) +B(fI,J, f)

)
. (B.1)

149
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where B(fI,J, f) :=
∫∫

(fI,J(z|x) − f(z|x))
2 dP(x)dz can be interpreted as a bias term

(or approximation error) and VAR(f̂I,J, fI,J) :=
∫∫ (

f̂I,J(z|x) − fI,J(z|x)
)2
dP(x)dz

can be interpreted as a variance term . First we bound the variance.

Lemma B.1. ∀1 6 j 6 J,∫ (
ψ̂j(x) −ψj(x)

)2
dP(x) = OP

(
1

λjδ
2
jm

)
,

where δj = λj − λj+1.

For a proof of Lemma B.1 see for example Sinha and Belkin (2009).

Lemma B.2. ∀1 6 j 6 J, there exists C <∞ that does not depend on m such that

E

[(
ψ̂j(X) −ψj(X)

)2]
< C,

where X ∼ P(x) is independent of the sample used to construct ψ̂j.

Proof. Let δ ∈ (0, 1). From Sinha and Belkin (2009), it follows that

P

(∫ (
ψ̂j(x) −ψj(x)

)2
dP(x) >

16 log
(
2
δ

)
δ2jm

)
< δ,

and therefore ∀ε > 0,

P

(∫ (
ψ̂j(x) −ψj(x)

)2
dP(x) > ε

)
< 2e−

δ2
j
mε

16 .

Hence

E

[(
ψ̂j(X) −ψj(X)

)2]
= E

[∫ (
ψ̂j(x) −ψj(x)

)2
dP(x)

]
=∫∞

0

P

(∫ (
ψ̂j(x) −ψj(x)

)2
dP(x) > ε

)
dε 6

∫
2e−

δ2
j
mε

16 dε <

∫
2e−

δ2
j
ε

16 dε <∞

Lemma B.3. ∀1 6 j 6 J and ∀1 6 j 6 J, there exists C <∞ that does not depend on m

such that

E

[
V

[
φi(Z)

(
ψ̂j(X) −ψj(X)

) ∣∣∣∣X̃1, . . . , X̃m

]]
< C
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Proof. Using that φ is bounded (Assumption 4.2), it follows that

E

[
V

[
φi(Z)

(
ψ̂j(X) −ψj(X)

) ∣∣∣∣X̃1, . . . , X̃m

]]
6 V

[
φi(Z)

(
ψ̂j(X) −ψj(X)

)]
6 E

[
φ2i (Z)

(
ψ̂j(X) −ψj(X)

)2]
6 KE

[(
ψ̂j(X) −ψj(X)

)2]
for some K <∞. The result follows from Lemma B.2.

Lemma B.4. ∀1 6 j 6 J and ∀1 6 j 6 J,[
1

n

n∑
k=1

φi(Zk)
(
ψ̂j(Xk) −ψj(Xk)

)
−

∫∫
φi(z)

(
ψ̂j(x) −ψj(x)

)
dP(z, x)

]2
= OP

(
1

n

)

Proof. LetA =
∫∫
φi(z)

(
ψ̂j(x) −ψj(x)

)
dP(z, x). By Chebyshev’s inequality it holds

that ∀M > 0

P

∣∣∣∣∣ 1n
n∑
k=1

φi(Zk)
(
ψ̂j(Xk) −ψj(Xk)

)
−A

∣∣∣∣∣
2

> M

∣∣∣∣X̃1, . . . , X̃m

 6
1

nM
V

[
φi(Z)

(
ψ̂j(X) −ψj(X)

) ∣∣∣∣X̃1, . . . , X̃m

]
.

The conclusion follows from taking an expectation with respect to the unlabeled

samples on both sides of the equation and using Lemma B.3.

Note that ψ̂ ′s are random functions, and therefore the proof of Lemma B.4 re-

lies on the fact that these functions are estimated using a different sample than

X1, . . . , Xn.

Lemma B.5. ∀1 6 j 6 J and ∀1 6 i 6 I,(
β̂i,j −βi,j

)2
= OP

(
1

n

)
+OP

(
1

λjδ
2
jm

)
.

Proof. It holds that

1

2

(
β̂i,j −βi,j

)2
6

(
1

n

n∑
k=1

φi(Zk)ψj(Xk) −βi,j

)2
+

(
1

n

n∑
k=1

φi(Zk)(ψ̂j(Xk) −ψj(Xk))

)2
.
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The first term is OP
(
1
n

)
. Let A be as in the proof of Lemma B.4. By using Cauchy-

Schwartz and that Lemma, the second term divided by two is bounded by

1

2

(
1

n

n∑
k=1

φi(Zk)
(
ψ̂j(Xk) −ψj(Xk)

)
−A+A

)2

6

(
1

n

n∑
k=1

φi(Zk)
(
ψ̂j(Xk) −ψj(Xk)

)
−A

)2
+A2.

6 OP

(
1

n

)
+

(∫∫
φ2i (z)dP(z, x)

)(∫∫ (
ψ̂j(x) −ψj(x)

)2
dP(z, x)

)
.

The result follows from Lemma B.1 and the orthogonality of φi.

Lemma B.6. [Sinha and Belkin 2009, Corollary 1] Under the stated assumptions,∫
ψ̂2j (x)dP(x) = OP

(
1

λj∆
2
Jm

)
+ 1

and ∫
ψ̂i(x)ψ̂j(x)dP(x) = OP

((
1√
λi

+
1√
λj

)
1

∆J
√
m

)
where ∆J = min16j6J δj.

Lemma B.7. Let h(z|x) =
∑I
i=1

∑J
j=1 βi,jφi(z)ψ̂j(x). Then

∫∫ ∣∣∣f̂I,J(z|x) − h(z|x)∣∣∣2 dP(x)dz = IJ
(
OP

(
1

n

)
+OP

(
1

λJ∆
2
Jm

))
.
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Proof. ∫∫ ∣∣∣f̂I,J(z|x) − h(z|x)∣∣∣2 dP(x)dz
=

I∑
i=1

J∑
j=1

J∑
l=1

(
β̂i,j −βi,j

)(
β̂i,l −βi,l

) ∫
ψ̂j(x)ψ̂l(x)dP(x)

6
I∑
i=1

J∑
j=1

(
β̂i,j −βi,j

)2 ∫
ψ̂j
2
(x)dP(x)+

+

I∑
i=1

J∑
j=1

J∑
l=1,l 6=j

(
β̂i,j −βi,j

)(
β̂i,l −βi,l

) ∫
ψ̂j(x)ψ̂l(x)dP(x) 6

I∑
i=1

J∑
j=1

(
β̂i,j −βi,j

)2 ∫
ψ̂j
2
(x)dP(x)+

+

 I∑
i=1

J∑
j=1

(
β̂i,j −βi,j

)2√√√√ J∑
j=1

J∑
l=1,l6=j

(∫
ψ̂j(x)ψ̂l(x)dP(x)

)2 ,

where the last inequality follows from repeatedly using Cauchy-Schwartz. The

result follows from Lemmas B.5 and B.6.

Lemma B.8. Let h(z|x) be as in Lemma B.7. Then

∫∫
|h(z|x) − fI,J(z|x)|

2 dP(x)dz = JOP

(
1

λJ∆
2
Jm

)
.

Proof. Using Cauchy-Schwartz inequality,

∫∫
|h(z|x) − fI,J(z|x)|

2 dP(x)dz 6
∫∫ ∣∣∣∣∣∣

I∑
i=1

J∑
j=1

βi,jφi(z)
(
ψj(x) − ψ̂j(x)

)∣∣∣∣∣∣
2

dP(x)dz

6


J∑
j=1

∫ [ I∑
i=1

βi,jφi(z)

]2
dz




J∑
j=1

∫ [
ψj(x) − ψ̂j(x)

]2
dP(x)


=


J∑
j=1

I∑
i=1

β2i,j




J∑
j=1

∫ [
ψj(x) − ψ̂j(x)

]2
dP(x)

 .

The conclusion follows from Lemma B.1 and by noticing that
∑J
j=1

∑I
i=1 β

2
i,j 6

||f(z|x)||2 <∞.
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It is now possible to bound the variance term:

Theorem B.1. Under the stated assumptions,

VAR(f̂I,J, fI,J) = IJ

(
OP

(
1

n

)
+OP

(
1

λJ∆
2
Jm

))
.

Proof. Let h be defined as in Lemma B.7. We have

1

2
VAR(f̂I,J, fI,J) =

1

2

∫∫ ∣∣∣f̂I,J(z|x) − h(z|x) + h(z|x) − fI,J(z|x)∣∣∣2 dP(x)dz
6
∫∫ ∣∣∣f̂I,J(z|x) − h(z|x)∣∣∣2 dP(x)dz+ ∫∫ |h(z|x) − fI,J(z|x)|2 dP(x)dz.

The conclusion follows from Lemmas B.7 and B.8.

We now bound the bias term.

Lemma B.9. For each z ∈ [0, 1], expand gz(x) in the basis ψ : gz(x) =
∑
j>1 α

z
jψj(x),

where αzj =
∫
gz(x)ψj(x)dP(x). We have

αzj =
∑
i>1

βi,jφi(z) and
∫ (
αzj
)2
dz =

∑
i>1

β2i,j.

Proof. It follows from projecting αzj onto the basis φ.

Similarly, we have the following.

Lemma B.10. For each x ∈ X, expand hx(z) in the basis φ : hx(z) =
∑
i>1 α

x
iφi(z),

where αx
i =
∫
hx(z)φi(z)dz. We have

αx
i =
∑
j>1

βi,jψi(x) and
∫
(αx
i)
2
dP(x) =

∑
j>1

β2i,j.

Lemma B.11. Using the same notation as Lemmas B.9 and B.10, we have

βi,j =

∫
αx
iψj(x)dP(x) =

∫
αzjφi(z)dz.

Proof. Follows from plugging the definitions of αx
i and αzj into the expressions

above and recalling the definition of βi,j.
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Lemma B.12.
∑
i>I

∫ (
αx
i

)2
dP(x) = O

(
1
I2s

)
.

Proof. By Lemma, B.10, hx(z) =
∑
i>1 α

x
iφi(z). As by Assumption 4.4 hx ∈Wφ(sx, cx),

∑
i>I

I2sx (αx
i)
2 6
∑
i>I

i2sx (αx
i)
2 6 c2x .

Hence

∑
i>I

∫
(αx
i)
2
dP(x) 6

∫
c2x
I2sx

dP(x) 6
1

I2β
c2.

Lemma B.13.
∑
j>J

∫ (
αzj

)2
dz = cKO(λJ).

Proof. Note that ||hz(.)||2HK
=
∑
j>1

(αzj )
2

λj
(Minh 2010). Using Assumption 4.5 and

that the eigenvalues are decreasing it follows that

∑
j>J

(
αzj
)2

=
∑
j>J

(
αzj
)2 λj
λj
6 λJ||hz(.)||2H 6 λJc

2
z,

and therefore
∑
j>J

∫ (
αzj

)2
dz 6 λJ

∫
z c
2
zdz = cKO(λJ).

Theorem B.2. Under the stated assumptions, the bias is bounded by

B(fI,J, f) = cKO(λJ) +O
(
1

I2β

)
.

Proof. By using orthogonality, we have that

B(fI,J, f)
def
=

∫∫
(f(z|x) − fI,J(z|x))

2 dP(x)dz 6
∑
j>J

∑
i>1

β2i,j +
∑
i>I

∑
j>1

β2i,j

=
∑
j>J

∫ (
αzj
)2
dz+

∑
i>I

∫
(αx
i)
2
dP(x),

where the last equality comes from Lemmas B.9 and B.10. The theorem follows

from Lemmas B.12 and B.13.
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The main Theorem of Chapter 4 for the kernel PCA basis follows from putting

together Theorems B.1 and B.2 using the bias-variance decomposition of Equation

B.1.

The proofs for the diffusion kernel follow the same strategy from those pre-

sented in Chapter 3. See also Izbicki and Lee (2014) for more details.
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