
Machine Learning
Beyond Point Predictions:
Uncertainty Quantification

Rafael IzbickiRafael Izbicki

Machine Learning

Beyond Point Predictions:

Uncertainty Quantification

1st Edition

Title: Machine Learning learning beyond point predictions: uncertainty

quantification. First Edition. Version from February 5, 2025.

Author: Rafael Izbicki.

Cover: This cover was created with the help of AI. Special thanks to Lea

Veras, Luben M. C. Cabezas, Michel Helcias Montoril, and Tiago Mendonça

for their valuable suggestions and help with editing it.

ISBN: 978-65-01-20272-3

This work is licensed under a Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International License. To view a copy of this license, visit

https://creativecommons.org/licenses/by-nc-nd/4.0/.

https://creativecommons.org/licenses/by-nc-nd/4.0/

Rafael Izbicki

Machine Learning

Beyond Point Predictions:

Uncertainty Quantification

Solum certum nihil esse certi.

The only certain thing is that

nothing is certain.

Pliny the Elder

To all of those who deeply shaped the way I

think:

My teachers

My students

My family

Contents

1 Introduction 1
1.1 Motivating Example: Life Expectancy and GDP 2

1.2 Aleatoric and Epistemic Uncertainty 3

1.3 Applications of UQ in ML . 5

1.4 Outline of the Book . 9

I Foundations of Uncertainty Quantification in ML 11

2 Review of Supervised Learning 13
2.1 Notation and Assumptions . 14

2.2 Loss Functions and Risk . 15

2.2.1 Optimal Solutions for Different Loss Functions 16

2.3 Model Selection: Overfitting and Underfitting 18

2.3.1 Data Splitting and Cross-Validation 19

2.4 Bias and Variance Tradeoff . 22

2.5 Tuning Parameters . 25

2.6 Methods to Create Prediction Functions 25

2.6.1 Parametric Methods . 25

2.6.2 K-Nearest Neighbors . 28

2.6.3 Trees . 29

2.6.4 Bagging and Random Forests 32

2.6.5 Boosting . 34

2.6.6 Artificial Neural Networks 35

2.7 The Myth of Imbalanced Data . 42

vii

.

2.8 Summary . 43

3 Quantifying Aleatoric Uncertainty with Conditional Densities 45
3.1 Loss Functions . 46

3.1.1 The L2 loss and the Brier Score 47

3.1.2 The Cross-Entropy Loss (or the Negative Loglikelihood) 48

3.1.3 Continuous Ranked Probability Score (CRPS) 50

3.1.4 Accuracy, F1-scores and Related metrics: Improper Met-

rics for Probabilistic Classification 52

3.2 Probabilistic Classifiers . 54

3.3 Parametric Approaches . 54

3.4 FlexCode . 56

3.4.1 Normalization and Spurious Bumps 58

3.4.2 Variable Importance . 58

3.4.3 Theory . 59

3.5 Mixture Models and Networks 60

3.6 Normalizing Flows . 62

3.7 The Ratio Trick . 64

3.8 Other Conditional Density Estimators 65

3.9 Quantile Regression . 67

3.9.1 Pinball Loss . 67

3.9.1.1 Estimation the Quantile Function 68

3.10 Simulated Example: Gaussian Distribution 71

3.11 Example: Twitter Location Prediction 72

3.12 Summary . 73

4 Diagnostics and Recalibration 75
4.1 PIT Values: Evaluating Calibration in Regression 76

4.1.1 Probabilistic Calibration and Recalibration 79

4.1.2 Simulated Example: Gaussian Distribution Revisited . . 80

4.2 Conditional PIT values . 81

4.2.1 Diagnostics . 84

4.2.2 Monotonic Neural Networks to Estimate the Regression

Function . 84

4.2.3 Handling Multivariate Responses 85

viii

Chapter 0. Contents

4.2.4 Example: Neural Density Inference for Galaxy Images . 87

4.3 Calibration of Classification Models 89

4.3.1 Evaluating Marginal Calibration 89

4.3.2 Recalibration of Probabilistic Classifiers 91

4.3.3 Limitations of Marginal Calibration 92

4.3.4 Example . 93

4.4 Summary . 95

5 From Conditional Densities to Prediction Regions 97
5.1 Optimal Prediction Regions . 98

5.1.1 Tuning Parameters and Notions of Coverage 102

5.2 Plug-in Prediction Regions . 102

5.3 Conformal Regions . 103

5.3.1 A Different Perspective on Conformal Regions: Toler-

ance Regions . 109

5.3.2 Comparison to Prediction Sets from Linear Models . . . 111

5.3.3 Achieving Asymptotic Conditional Coverage 114

5.3.3.1 Label-Conditional Conformal Regions 116

5.3.4 Local Conformal Regions 117

5.3.5 Conformal Sets for Classification 119

5.3.6 Example: Photometric Redshift Prediction 120

5.4 Comparing Linear, Bayesian, Conformal Methods, and Plug-in

Approaches . 122

5.5 Summary . 124

6 Capturing Epistemic Uncertainty through Bayesian and Ensemble
Techniques 127
6.1 Bayesian Models . 128

6.1.1 Aleatoric vs. Epistemic Uncertainty Revisited 131

6.1.2 Bayesian-Optimal Prediction Regions 132

6.2 Gaussian Process Regression . 133

6.2.1 Feature Space Perspective 133

6.2.2 Kernel Perspective . 134

6.2.3 Bayesian Optimization and Gaussian Processes 138

6.3 Bayesian Additive Regression Trees (BART) 142

ix

.

6.4 Monte Carlo Dropout . 145

6.5 Batch Normalization . 147

6.6 Deep Ensembles . 148

6.7 The Bootstrap . 149

6.8 Summary . 151

II Applications 153

7 Photometric Redshift Prediction 155
7.1 Vera C. Rubin Observatory . 156

7.2 Southern Photometric Local Universe Survey (S-PLUS) 159

8 Disease Surveillance: Dengue and COVID-19 163
8.1 Dengue Nowcasting . 164

8.1.1 Prediction Model . 164

8.1.2 Uncertainty Quantification for the Number of Cases . . . 165

8.1.3 Results . 166

8.2 COVID-19 Hospitalizations and Vaccination Impact 169

8.2.1 Prediction Model for Avoided Hospitalizations 169

8.2.2 Results . 171

9 Likelihood-Free Inference (LFI) 173
9.1 Approximate Bayesian Computation via Conditional Density

Estimation (ABC-CDE) . 175

9.1.1 Estimating the Posterior Density via CDE 175

9.1.2 Method Selection: Comparing Different Estimators of

the Posterior . 176

9.1.3 Summary Statistics Selection 179

9.2 Examples . 180

9.2.1 Examples with Known Posteriors 180

9.2.1.1 CDE and Method Selection 181

9.2.1.2 Summary Statistic Selection 181

9.2.2 Application: Estimating a Galaxy’s Dark Matter Density

Profile . 183

9.3 Likelihood Free Frequentist Inference (LF2I) 186

x

0. Contents

9.3.1 Confidence Sets via Neyman Inversion 186

9.3.2 Choosing a Test Statistic 187

9.3.2.1 Likelihood-Based Statistics 188

9.3.2.2 Waldo . 189

9.3.3 Calibrating the Cutoffs . 190

9.3.4 Evaluating Coverage and UQ over the Confidence Sets . 192

9.3.5 Example: Two Moons . 193

9.3.6 Nuisance Parameters . 194

9.3.7 Example: Muon energy estimation 196

9.4 Summary . 197

10 Optimizing Construction Schedules: Mitigating Weather-Related
Delays 199
10.1 Estimating the Distribution . 202

10.2 Model Selection . 203

10.2.1 CDE loss . 204

10.2.2 Weighted pinball loss . 204

10.3 Example . 205

11 Closing Thoughts 207
11.1 Summary of Key Concepts . 208

11.2 Limitations of UQ Approaches 210

11.2.1 Assumptions and Ontological Uncertainties 210

11.2.2 Overconfidence . 211

11.2.3 Uncertainty Cannot Address All Risks 211

11.3 Practical Recommendations for Using UQ in Machine Learning 212

xi

.

xii

Foreword

This book. Over the past few decades, Machine Learning has achieved

remarkable success in generating accurate predictions across diverse domains.

However, point predictions alone are often insufficient; understanding and

effectively representing the uncertainties in these predictions is crucial for

informed decision-making in real-world applications. As a result, there has

been a surge in research focused on developing methods to quantify this

uncertainty. This book aims to explore some of these techniques, with a

particular emphasis on approaches that I find compelling and to which I have

contributed through my research.

The role of the two cultures in uncertainty quantification. Breiman

(2001a) distinguishes between two key cultures in statistical modeling: the

data modeling culture, which dominates traditional statistics, and the algorithmic
modeling culture, prevalent in machine learning. The data modeling culture

emphasizes the interpretation of model parameters, operating under the as-

sumption that the model accurately reflects the underlying data-generating

mechanism. This leads to a focus on goodness-of-fit tests to ensure the model’s

validity. In contrast, the algorithmic modeling culture prioritizes prediction

accuracy, where models are evaluated based on their predictive performance

using loss functions, rather than an assumption of correctness.

Integrating these approaches is particularly advantageous for uncertainty

quantification. While loss functions are effective for comparing models, they

provide only a relative measure of performance and do not assess the model’s

overall adequacy. Consequently, they fall short of answering critical questions

such as, "Should we continue searching for better estimates, or is our current

xiii

.

model fit sufficient?" Goodness-of-fit techniques, however, can address this gap

by evaluating model adequacy and suggesting potential improvements. Thus,

combining these cultures enables a more comprehensive model evaluation.

This integrated approach is emphasized in Chapter 4, which focuses on using

goodness-of-fit methods to assess the adequacy of density models, thereby

enriching the model evaluation process with practical insights.

Theory. This book presents theoretical results about some of the tech-

niques we explore. Good theory is not an abstract exercise; it provides a

different perspective on problems, complementing what we learn from practi-

cal applications and simulations. While some sections discuss more advanced

mathematics to deepen your understanding, you can still grasp the book’s core

concepts even if you choose to skip these parts, especially if you’re focused on

an introductory overview of uncertainty quantification.

Prerequisites. We assume that the reader is familiar with the foundations

of probability and statistical inference. An excellent introduction to the topic

at the desired level is provided by Schervish and DeGroot (2014). Readers

will also benefit from having taken an introductory class on machine learning

or regression analysis. James et al. (2013) offer a great introduction to these

topics.

Research Papers. Parts of this book are based on the following research

papers:

• Izbicki, R., & Lee, A. B. (2017). Converting high-dimensional regression

to high-dimensional conditional density estimation. Electronic Journal of
Statistics, 11(2), 2800–2831

• Izbicki, R., Lee, A. B., & Pospisil, T. (2019). ABC–CDE: Toward ap-

proximate bayesian computation with complex high-dimensional data

and limited simulations. Journal of Computational and Graphical Statistics,
28(3), 481–492

• Izbicki, R., Shimizu, G. T., & Stern, R. B. (2020). Distribution-free condi-

tional predictive bands using density estimators. Proceedings of Machine
Learning Research (AISTATS Track)

xiv

0. Contents

• Dalmasso, N., Pospisil, T., Lee, A. B., Izbicki, R., Freeman, P. E., & Malz,

A. I. (2020b). Conditional density estimation tools in Python and R with

applications to photometric redshifts and likelihood-free cosmological

inference. Astronomy and Computing, 100362

• Dalmasso, N., Izbicki, R., & Lee, A. (2020a). Confidence sets and hypoth-

esis testing in a likelihood-free inference setting. International Conference
on Machine Learning, 2323–2334

• Schmidt, S. J., Malz, A. I., Soo, J. Y. H., Almosallam, I. A., Brescia, M.,

Cavuoti, S., Cohen-Tanugi, J., Connolly, A. J., DeRose, J., Freeman, P. E.,

Graham, M. L., Iyer, K. G., Jarvis, M. J., Kalmbach, J. B., Kovacs, E., Lee,

A. B., Longo, G., Morrison, C. B., Newman, J. A., . . . LSST Dark Energy

Science Collaboration. (2020). Evaluation of probabilistic photometric

redshift estimation approaches for The Rubin Observatory Legacy Sur-

vey of Space and Time (LSST). Monthly Notices of the Royal Astronomical
Society, 499(2), 1587–1606

• Izbicki, R., Bastos, L. S., Izbicki, M., Lopes, H. F., & Santos, T. M. d. (2021).

How many hospitalizations has the COVID-19 vaccination already pre-

vented in São Paulo? Clinics, 76, e3250

• Zhao, D., Dalmasso, N., Izbicki, R., & Lee, A. B. (2021). Diagnostics for

conditional density models and bayesian inference algorithms. Uncer-
tainty in Artificial Intelligence, 1830–1840

• Dey, B., Zhao, D., Newman, J. A., Andrews, B. H., Izbicki, R., & Lee, A. B.

(2022). Calibrated predictive distributions via diagnostics for conditional

coverage. arXiv:2205.14568

• Izbicki, R., Shimizu, G., & Stern, R. B. (2022). CD-split and HPD-split: Ef-

ficient conformal regions in high dimensions. Journal of Machine Learning
Research

• Masserano, L., Dorigo, T., Izbicki, R., Kuusela, M., & Lee, A. (2023).

Simulator-based inference with waldo: Confidence regions by leverag-

ing prediction algorithms and posterior estimators for inverse problems.

International Conference on Artificial Intelligence and Statistics, 2960–2974

xv

.

• Nakazono, L., R Valença, R., Soares, G., Izbicki, R., Ivezić, Ž., R Lima,

E., T Hirata, N., Sodré Jr, L., Overzier, R., Almeida-Fernandes, F., et al.

(2024). The quasar catalogue for s-plus dr4 (qucats) and the estimation

of photometric redshifts. Monthly Notices of the Royal Astronomical Society,

531(1), 327–339

• Xiao, Y., Soares, G., Bastos, L., Izbicki, R., & Moraga, P. (2024). Dengue

nowcasting in brazil by combining official surveillance data and google

trends information. medRxiv. https://doi.org/10.1101/2024.09.02.

24312934

• Dalmasso, N., Masserano, L., Zhao, D., Izbicki, R., & Lee, A. B. (2024).

Likelihood-free frequentist inference: Bridging classical statistics and

machine learning for reliable simulator-based inference. Electronic Jour-
nal of Statistics, 18(2), 5045–5090

• Cabezas, L. M. C., Soares, G. P., Ramos, T. R., Stern, R. B., & Izbicki, R.

(2024). Distribution-free calibration of statistical confidence sets. arXiv
preprint arXiv:2411.19368. https://arxiv.org/pdf/2411.19368

• Cabezas, L. M., Otto, M. P., Izbicki, R., & Stern, R. B. (2025). Regres-

sion trees for fast and adaptive prediction intervals. Information Sciences,
121369

• Comito, M. B., Izbicki, R., do Canto Hubert Junior, P., & Moura, F. (2025).

Improving decision-making in construction: Nonparametric modeling

of weather-induced delays [in prep.]

Code and Data. Notebooks for reproducing some of the analyses presented

in this book are available at https://github.com/rizbicki/UQ4ML. These

notebooks are referenced throughout the book for further exploration. For ad-

ditional resources, including details about the book and purchasing a printed

version, visit the official website at https://rafaelizbicki.com/UQ4ML.

Errors. This book certainly contains many errors. If you encounter any

mistakes, whether grammatical or related to mathematics, or if you have ad-

ditional suggestions, please email them to rafaelizbicki (at) gmail.com.

xvi

https://doi.org/10.1101/2024.09.02.24312934
https://doi.org/10.1101/2024.09.02.24312934
https://arxiv.org/pdf/2411.19368
https://github.com/rizbicki/UQ4ML
https://rafaelizbicki.com/UQ4ML

0. Contents

Acknowledgments. I am deeply grateful to my long-term collaborators,

Ann B. Lee and Rafael B. Stern, whose significant contributions were crucial in

developing much of the research that forms the foundation of this book. Their

insights have been invaluable, and this work would not have been possible

without their partnership.

I am also grateful to Brett Andrews, Leonardo Soares Bastos, Luben Miguel

Cruz Cabezas, Mateus Borges Comito, Victor Coscrato, Biprateep Dey, Nic Dal-

masso, Tomasso Dorigo, Marco Henrique de Almeida Inacio, Meyer Izbicki,

Paulo do Canto Hubert Junior, Mikael Kuusela, Hedibert Freita Lopes, Alex

Malz, Luca Masserano, Filipe Moura, Lilianne Nakazono, Jeff Newman, Ma-

teus Piovezan Otto, Taylor Pospisil, Thiago Rodrigo Ramos, Hellen Geremias

dos Santos, Tiago Mendonça dos Santos, Paula Moraga, Gilson Shimizu,

Gabriela Soares, Guilherme Pedrilho Soares, Raquel Ruiz Valença, Yang Xiao,

and David Zhao for their exceptional contributions as co-authors.

I gratefully acknowledge the São Paulo Research Foundation (FAPESP),

the Brazilian National Council for Scientific and Technological Development

(CNPq), the Coordination for the Improvement of Higher Education Personnel

(CAPES), and the Federal University of São Carlos (UFSCar). Their support

was essential in making this project possible.

Finally, I am deeply thankful to Deborah, Meyer, Sarah, Lea, Bianca, and

Lila for their constant support and understanding.

xvii

.

xviii

Chapter 1

Introduction

The Fortune Teller. Georges de La Tour, 1630s, The Metropolitan Museum of

Art, New York.

1.1. Motivating Example: Life Expectancy and GDP

Maturity is the capacity to endure

uncertainty.

John Huston Finley

Machine learning (ML) has seen significant progress in recent years, driven

by larger datasets, improved computing capabilities, and more advanced al-

gorithms. These advancements have enhanced the accuracy of predictions

across a variety of fields, from healthcare diagnostics to market trend fore-

casting. However, despite these improvements, the relationship between the

inputs to a machine learning model, represented by x, and the target variable,

y, often involves significant uncertainty. This uncertainty can stem not only

from the limitations of the model but also from the inherent unpredictability

of the phenomena being studied, given the available features x.

The central goal of this book is to provide practical tools and theoretical

insights for enhancing the reliability of machine learning predictions by incor-

porating uncertainty quantification. We focus on developing methods that go

beyond simple point predictions to offer a more nuanced understanding of the

uncertainty inherent in various prediction problems, enabling more informed

decision-making across diverse applications.

1.1 Motivating Example: Life Expectancy and GDP

To illustrate the challenges of uncertainty in prediction, consider the rela-

tionship between GDP per capita (x) and life expectancy (y) in 211 countries

in 2012, as shown in Figure 1.1. GDP per capita is often used as a proxy

for a country’s wealth or development, and it generally correlates with bet-

ter health outcomes, including longer life expectancy. However, no machine

learning model that outputs a single y for each x can perfectly predict life

expectancy across all countries using GDP alone. This is because GDP per

capita, while informative, is not the sole determinant of life expectancy. Other

factors, such as healthcare quality, education, and lifestyle, contribute to the

observed outcomes, leading to variability even among countries with similar

GDPs.

2

Chapter 1. Introduction

Figure 1.1: Life expectancy (y) versus GDP per Capita (x) of 211 countries. It is

impossible to give perfect predictions for y using x only. Moreover, countries

with a GDP per capita of ≈ $1000 have much greater variability in their life

expectancy than countries with a GDP per capita of ≈ $80000.

Even with infinite data, perfect predictions are impossible here. This is

because x does not uniquely determine y, so inherent variability limits the

precision of point predictions, often making them insufficient for decision-

making. For example, countries with a GDP per capita around $1000 show

much more variability in life expectancy than those around $80000, making

predictions for the former far less reliable. This highlights the need for models

that not only predict likely outcomes but also communicate the uncertainty

surrounding them.

1.2 Aleatoric and Epistemic Uncertainty

The uncertainty associated with predicting a new label Y given features x
can be divided into two main categories

1
:

• Aleatoric Uncertainty: This type of uncertainty arises when the same

feature vector x corresponds to different possible labels y. It captures

1
There are several nuances in this classification; see Hüllermeier and Waegeman (2021) and

references therein for a thorough discussion.

3

1.2. Aleatoric and Epistemic Uncertainty

the inherent variability in the distribution of Y conditional on x, which

we denote by Y |x. For example, in the case of GDP and life expectancy,

two countries with the same GDP per capita may have different life

expectancies due to factors such as healthcare or education. Aleatoric

uncertainty can be measured by the conditional distribution of Y given x.

Figure 1.2 illustrates this concept: the green and blue curves represent the

conditional densities f(y|xa) and f(y|xb), showing that while the optimal

point predictions for xa and xb (given by the true regression functions

E[Y |xa] and E[Y |xb]; see Chapter 2 for a mathematical explanation) are

identical, the associated uncertainties differ. This reflects the inherent

variability in the output for each input. In the context of classification

(that is, a prediction problem where Y is a qualitative label), f(y|x) is the

probability of the label given the features, P(Y = y|x).

Figure 1.2: Conditional densities f(y|x) for inputs x = xa (green) and x = xb

(blue), showing identical optimal point predictions but different uncertainties.

The dashed line marks the optimal point prediction r(x) = E[Y |x].

• Epistemic Uncertainty: This uncertainty is due to a lack of knowledge

about the true data generating process (that is, the true distribution

of Y |x). Increasing the size of the dataset can help reduce epistemic

uncertainty, but it does not affect aleatoric uncertainty. Epistemic uncer-

tainty is particularly important in scenarios with limited data. Figure

1.3 illustrates epistemic uncertainty: the first plot shows three regression

models that are compatible with the same dataset, each producing dif-

4

Chapter 1. Introduction

Figure 1.3: Illustration of epistemic uncertainty. Left: Comparison of three

regression models, each producing very different predictions due to sparse

data in certain regions. Right: Gaussian process regression with uncertainty

bands, where the shaded area represents epistemic uncertainty.

ferent predictions due to sparse data in certain regions, highlighting the

uncertainty that arises from the lack of data. The second plot shows the

epistemic uncertainty associated to the regression function as measured

by a Gaussian process fit to the same data (see Section 6.2 for Gaussian

processes). These bands visually depict epistemic uncertainty, showing

greater uncertainty in areas with fewer data points and more confidence

in regions with denser data.

In many prediction problems, it is important to distinguish between these

two types of uncertainty, as they require different treatment. While epistemic

uncertainty can be mitigated by gathering larger datasets or improving the

model, aleatoric uncertainty can only be reduced by measuring additional

covariates.

In the next section, we will briefly explore real-world machine learning

problems where quantifying uncertainty is important.

1.3 Applications of UQ in ML

Uncertainty Quantification (UQ) techniques play an essential role in im-

proving the reliability and utility of predictive models in many fields. By

5

1.3. Applications of UQ in ML

offering insights into the limitations and confidence of model predictions, UQ

aids in decision-making and enhances risk assessment. Here are some exam-

ples of applications of UQ in machine learning:

• Medical Image Segmentation: UQ is essential for addressing inher-

ent ambiguities in medical image segmentation, such as variations in

anatomical definitions and partial volumes. Traditional deep learning

models often rely on point estimates, which may fail to capture the

full spectrum of plausible segmentations. UQ techniques enable the in-

ference of distributions over possible segmentations, providing a more

comprehensive quantification of uncertainty – crucial in clinical settings

where inter-rater variability and consensus-based decisions are common

(Csillag et al., 2023; Selvan et al., 2020).

• Fault Diagnosis: UQ is crucial for fault diagnosis because it provides a

measure of confidence in the diagnostic outcomes, which is essential for

making informed decisions in critical systems. UQ allows engineers and

system operators to understand not just what the diagnosis indicates,

but also how reliable that diagnosis is. This is particularly important

in scenarios where false positives or negatives can lead to significant

consequences, such as unnecessary maintenance actions or undetected

failures (Mian et al., 2024).

• Residential Load Forecasting: Accurate residential load forecasting is

critical for efficient energy management, yet traditional probabilistic

methods often struggle with the inherent uncertainty in household elec-

tricity consumption patterns. UQ techniques provide a more complete

probabilistic representation of future consumption, which is essential

for informed decision-making in modern power systems (Afrasiabi et

al., 2020).

• Astronomy: UQ is indispensable in astronomy, particularly for esti-

mating distances to galaxies (photo-z estimation; see Chapter 7 for de-

tails) and performing likelihood-free cosmological inference (Chapter

9). While traditional methods typically offer single-point estimates, UQ

methods deliver a more nuanced picture, enabling more accurate infer-

6

Chapter 1. Introduction

ences in scenarios where multiple redshifts or cosmological parameter

values align with the observed data.

• Validating Soil Property Predictions: When ML models are used as a

replacement or supplement to traditional soil laboratory analysis, rig-

orous uncertainty assessment becomes indispensable. Without a clear

understanding of the model’s confidence in its predictions, it is difficult

to gauge their reliability for critical applications such as digital soil map-

ping or soil carbon accounting (Bejani and Ghatee, 2021; England and

Viscarra Rossel, 2018; Padarian et al., 2022; Searle et al., 2021). UQ also fa-

cilitates the integration of predictions from various models or sensors, as

understanding the uncertainty associated with each prediction is crucial

for appropriately weighting different sources (Horta et al., 2015).

• Land-Use Land-Cover (LULC) Classification: UQ enhances the relia-

bility of LULC maps by identifying areas with high classification uncer-

tainty, which is critical for accurate environmental and ecological analy-

sis. This ensures that users are aware of the confidence levels in different

regions of the map, improving the robustness of downstream applica-

tions (Valle et al., 2024b; Valle et al., 2023).

• Forest Biomass Estimation: UQ improves reliability in biomass pre-

dictions by addressing uncertainty in multistep upscaling approaches

using sensors like LiDAR and Landsat. Conformal prediction ensures

well-calibrated intervals, aiding applications like carbon accounting and

forest management (Valle et al., 2024a).

• Cancer Risk Assessment: In the context of cancer risk assessment, uncer-

tainty quantification helps in providing more accurate and personalized

predictions, reducing the number of unnecessary biopsies while main-

taining high sensitivity for cancer detection. This enhances decision-

making in clinical settings by offering clearer insights into the confidence

level of each diagnosis (Clark et al., 2024; Fröhlich et al., 2024; Vazquez

and Facelli, 2022).

• Robotics Motion Planning: UQ can be used in robotics for ensuring

safe and effective motion planning, particularly when robots operate in

7

1.3. Applications of UQ in ML

unfamiliar environments. For instance, it can be used to enable robots

to create prediction regions in real-time, ensuring that their movements

remain safe even under changing conditions (Marques and Berenson,

2024).

• Autonomous Vehicles: Uncertainty quantification plays a critical role in

the safety and reliability of autonomous vehicles by providing confidence

measures for the vehicle’s perception and decision-making systems. It

helps in identifying scenarios where the model’s predictions are uncer-

tain, allowing the system to take precautionary actions, such as slowing

down or handing control back to a human driver (McAllister et al., 2017).

• Predicting Infectious Disease Waves: UQ plays a crucial role in pre-

dicting waves of infectious diseases, such as dengue, COVID-19, and

Influenza. By quantifying uncertainty in real-time models, UQ enhances

the reliability of forecasts, enabling better preparation and response to

potential outbreaks (Codeço et al., 2016; Ray and Reich, 2018; Wu et al.,

2020); see also Chapter 8.

• Natural Language Processing (NLP): UQ enhances reliability in NLP by

addressing challenges like hallucinations, biases, and poor calibration

in large language models (LLMs). It is applicable to tasks such as text

classification, natural language generation, part-of-speech tagging, and

multilabel classification (Campos et al., 2024; Cherian et al., 2024).

Some of these examples will be explored in greater depth throughout the

book.

8

Chapter 1. Introduction

1.4 Outline of the Book

The Statistician is the Wizard who

makes "scientific" statements

about invisible states and

quantities. However, contrary to

the real wishes (or witches), he

attaches uncertainties to his

statements.

Carlos Alberto de Bragança Pereira

In this book, we explore various methods for estimating uncertainties in

prediction problems. The structure of this book is as follows:

The first part covers the statistical foundations of uncertainty quantifica-

tion in machine learning. It starts with Chapter 2, which reviews supervised

learning for classification and regression. Chapter 3 then covers methods to

estimate conditional densities, modeling the aleatoric uncertainty of the target

Y given the input x. Chapter 4 introduces tools to evaluate whether these

estimates are good. Chapter 5 explains how to compute prediction bands for

Y from estimated densities and discusses alternative methods based on con-

formal inference. Some of these take into account both the aleatoric and the

epistemic uncertainties. Chapter 6 then provides an overview of techniques

that directly model both the aleatoric and the epistemic uncertainty on Y .

The second part of the book contains applications of the tools introduced

in previous chapters. Chapter 7 applies some of the UQ techniques to the

photo-z problem from cosmology, while Chapter 8 applies them to dengue

epidemic nowcasting and to evaluate the impact of vaccination in COVID-19.

Chapter 9 applies the techniques to likelihood-free inference problems, where

the goal is to infer parameters θ of a statistical model in which a tractable

likelihood function is unavailable. Finally, Chapter 10 demonstrates how to

predict the duration of construction projects by incorporating weather-related

delays using historical meteorological data.

Chapter 11 concludes the book by summarizing the key topics explored

and briefly discussing further challenges in UQ.

9

1.4. Outline of the Book

10

Part I

Foundations of Uncertainty
Quantification in ML

11

Chapter 2

Review of Supervised
Learning

A Philosopher Lecturing on the Orrery. Joseph Wright of Derby, 1766, Derby

Museum and Art Gallery, Derby.

2.1. Notation and Assumptions

Forecasting is the art of saying

what will happen and then

explaining why it didn’t.

Unknown Author

The main objective of a supervised model is to predict the value of a random

variable Y ∈ Y using information from a vector x = (x1, . . . ,xd) ∈ Rd := X .

Depending on the nature of Y , the problem can be categorized as follows:

• Regression: When Y is a quantitative variable, the task involves predict-

ing a continuous value.

• Classification: When Y is a qualitative variable, the task involves assign-

ing the input to one of several predefined categories.

To achieve this goal, we assume access to a labeled dataset:

(X1,Y1), . . . ,(Xn,Yn)

where both the x’s and y’s are known.

2.1 Notation and Assumptions

Independence is happiness.

Susan B. Anthony

The variable Y is often called the response variable, dependent variable,

target, label, or outcome variable. On the other hand, the observations con-

tained in x = (x1, . . . ,xd) are generally referred to as explanatory variables,

independent variables, features, attributes, predictors, covariates, or input

variables.

Throughout the book, unless stated otherwise, we assume that the labeled

daset is independent and identically distributed (i.i.d.) to (X,Y). See the

notation used in Table 2.1.

14

Chapter 2. Review of Supervised Learning

Table 2.1: Notation used in the book.

Response Covariates

Y1 X1,1 . . . X1,d (= X1)

...
...

. . .
...

Yn Xn,1 . . . Xn,d (= Xn)

The goal of a supervised model is to create a function

g : Rd −→Y

that has good predictive power. That is, g must be such that, given new i.i.d.

observations (Xn+1,Yn+1), . . . ,(Xn+m,Yn+m), we have

g(xn+1)≈ yn+1, . . . ,g(xn+m)≈ yn+m.

In a regression problem, we assume that Y ⊂ R, while in a classification

problem, we assume without loss of generalization that Y = {0,1, . . . ,K − 1}
for some K > 1.

2.2 Loss Functions and Risk

In supervised learning, constructing a good prediction function g : Rd −→
Y requires a criterion to measure its performance. This is typically done using

a loss function, which quantifies the error in a prediction and provides a way

to guide the learning process.

A loss function is defined as

L : Y ×Y → R,

(g(x),y) 7→ L(g(x),y),

where g(x) is the predicted value and y is the true label. The loss function

evaluates how well the prediction g(x) matches the true outcome y. The choice

of a loss function depends on the nature of the task, with typical examples

being:

15

2.2. Loss Functions and Risk

• In regression tasks, a commonly used loss function is the quadratic loss:

L(g(x),y) = (y− g(x))2, (2.1)

which penalizes larger deviations between the prediction and the actual

outcome more heavily.

• For classification, the loss function L(g(x),y) is often designed so that

L(k,k) = 0 for every k ∈ Y . Here, L(k,j) represents the penalty for

predicting class j when the true class is k. A common choice is the

zero-one loss, L(k,j) = I(k , j), which assigns an equal penalty to all

misclassifications, even though this assumption may not be appropriate

in many real-world applications (see Section 2.7).

The performance of a prediction function g is then assessed through the

risk, which is the expected loss over new, unseen data:

R(g) = E [L(g(X),Y)] ,

here (X,Y) represents a random variable drawn from the same distribution

as the training data. The risk measures how well the function g performs on

average, with lower risk indicating better performance.

In classification problems, the risk under the zero-one loss becomes

R(g) = E [I(Y , g(X))] = P(Y , g(X)) , (2.2)

which represents the probability that the classifier misclassifies a new sample.

A more intuitive and commonly used measure is the classifier’s accuracy, given

by 1−R(g) = P(Y = g(X)). Minimizing the risk is equivalent to maximizing

the accuracy. However, it is important to note some limitations of this metric

when the goal is to quantify uncertainties (see Section 3.1.4).

2.2.1 Optimal Solutions for Different Loss Functions

Different choices of loss functions lead to different optimal prediction func-

tions. For instance:

16

Chapter 2. Review of Supervised Learning

Theorem 1 (Regression function). In a regression problem, the function g that
minimizes the risk R(g) = E

[
(Y − g(X))2] is the regression function, which is the

conditional expectation:
r(x) = E[Y |x].

This result indicates that, under quadratic loss, the best prediction function

is the one that outputs the average value of Y given x. While r(x) is generally

unknown in practical scenarios, this insight suggests that regression problems

can be tackled by estimating the regression function r(x).

Theorem 2 (Bayes classifier). In classification, the function g that minimizes the
risk is called the Bayes classifier. It is defined as:

gBayes(x) := argmin
j∈Y

∑
k∈Y

L(k,j)P(Y = k|x). (2.3)

In the binary classification case (that is, K = 2) with L(k,k) = 0 for all k ∈ Y , this
reduces to the decision rule:

gBayes(x) =

1, if P(Y = 1|x)≥ L(0,1)
L(0,1)+L(1,0) ,

0, otherwise.
(2.4)

Under the zero-one loss, this further simplifies to:

gBayes(x) =

1, if P(Y = 1|x)≥ 1
2 ,

0, otherwise.

In the general classification case with a zero-one loss, the Bayes classifier becomes:

gBayes(x) = argmax
j∈Y

P(Y = j|x).

As in the regression case, P(Y = k|x) cannot be computed in real-world

problems. However, this theorem suggests that classification problems can be

solved by estimating such probabilities.

The objective of supervised learning is, therefore, to develop methods that

estimate these functions effectively, ensuring low risk and therefore reliable

predictions.

17

2.3. Model Selection: Overfitting and Underfitting

Figure 2.1: GPD per Capita and Life Expectancy in 211 countries and the fitted

prediction models g. Each g is a polynomial with p degrees.

2.3 Model Selection: Overfitting and Underfitting

The best preparation for tomorrow

is doing your best today.

H. Jackson Brown Jr

In practical problems, it is common to fit multiple models to g(x) and search

for the one with the best predictive power, that is, the one with the lowest risk.

This is exemplified below in a regression context.

Exemple 2.1. [Life Expectancy and Per Capita GDP] Recall the example from

Section 1.1. The challenge is to utilize this data to predict the life expectancy

of countries where the GDP per Capita is known but life expectancy is not. To

achieve this, one can estimate E[Y |x], where Y is the life expectancy in a given

country, and x is its GDP per Capita. Figure 2.1 shows the fitting of three

different models for the prediction function:

g(x) = β0 +
p∑

i=1
βix

i, for p ∈ {1,4,50}.

In other words, we fit three polynomial regressions: one of degree 1, one

of degree 4, and one of degree 50. The fits were performed (that is, βi were

estimated) using the least squares method (Section 2.6.1). While the degree-1

18

Chapter 2. Review of Supervised Learning

model is too simplistic for the data, the model with p = 50 (that is, 50th-

degree) is too complex and seems to provide a function g that will not make

good predictions on new observations. The model with p = 4 seems to be

the most reasonable in this case. We say that the model with p = 1 suffers

from underfitting, while the model with p = 50 suffers from overfitting – it

over-adapts to this specific sample but has low generalization power. The goal

of this section is to describe methods for choosing the best predictive model

among those that were fitted, that it, the model with the highest predictive

power. In this example, we want a method that automatically chooses p = 4.

The goal of a model selection method is to identify a function g from a

candidate class G that has good predictive performance, characterized by low

risk. Because the true risk R(g) is unknown, it must be estimated to assess

the predictive ability of any given g ∈ G. In the next section, we introduce

methods for estimating this risk.

2.3.1 Data Splitting and Cross-Validation

The observed risk (also known as the training error, or the training risk),

defined by

1
n

n∑
i=1

L(g(Xi),Yi), (2.5)

is a very optimistic estimator of the true risk. If used for model selec-

tion, it leads to overfitting. This happens because g was chosen to fit well

(X1,Y1), . . . ,(Xn,Yn).
One way to solve this problem is to divide the dataset into two parts:

training and validation:

Training (e.g., 70%)︷ ︸︸ ︷
(X1,Y1),(X2,Y2), . . . ,(Xs,Ys),

Validation (e.g., 30%)︷ ︸︸ ︷
(Xs+1,Ys+1), . . . ,(Xn,Yn).

We use the training set exclusively to estimate g (e.g., estimate the coef-

ficients of the linear regression), and the validation set only to estimate R(g)

19

2.3. Model Selection: Overfitting and Underfitting

via

R̂(g) = 1
n− s

n∑
i=s+1

L(g(Xi),Yi) =: R̂(g), (2.6)

that is, we evaluate the error on the validation set.

A good practice for choosing which samples will be used for the training

set and which will be used for the validation set is to do it randomly. Thus,

a random number generator is used to choose which samples will be used

for training and which will be used for validation. This procedure avoids

problems when the dataset is previously sorted according to some covariate

(e.g., the person who collected the data may have ordered the observations

according to some variable).

Since the validation set was not used to estimate the parameters of g, the

estimator from Equation 2.6 is consistent by the law of large numbers.

The procedure of dividing the data into two parts and using one part

to estimate the risk is called data splitting. A variation of this method is

cross-validation, which uses the entire sample. For example, in leave-one-out
cross-validation (LOOCV) (Stone, 1974), the estimator used is given by

R̂(g) = 1
n

n∑
i=1

L(g−i(Xi);Yi),

where g−i is fitted using all observations except the i-th one, that is, using

(X1,Y1), . . . ,(Xi−1,Yi−1),(Xi+1,Yi+1), . . . ,(Xn,Yn).

Alternatively, we can use k-fold cross-validation. In this approach, we ran-

domly divide the data into k disjoint folds of approximately the same size. Let

L1, . . . ,Lk ⊂ {1, . . . ,n} be the indices associated with each of the folds. The idea

of k-fold cross-validation is to create k estimators of the regression function using

the same method, ĝ−1, . . . , ĝ−k, where ĝ−j is created using all observations in

the dataset except those in fold Lj . The estimator of the risk is given by

R̂(g) = 1
n

k∑
j=1

∑
i∈Lj

L(g−j(Xi);Yi).

20

Chapter 2. Review of Supervised Learning

Note that when k = n, we get LOOCV. For more details, see Wasserman (2006).

Training vs. Validation vs. Test. Just like the error on the training set

is very optimistic because each g ∈ G is chosen to (approximately) minimize

it, the error on the validation set evaluated on the g ∈ G with the lowest error
on the validation set is also optimistic, especially if many prediction methods

are evaluated on the validation set, that is, if |G| is large. This can lead to

overfitting to the validation set, that is, it may lead to choosing a function g

that performs well on the validation set but not on new observations. One

way to circumvent this problem is to split the original dataset into three parts:

training, validation, and test. The training and validation sets are used as

described above. The test set is used to estimate the error of the best prediction

function determined using the validation set. This way, we can know if the

risk of the best g found using the validation set is indeed small.

Several variations of these ideas can be used. For example, suppose we

want to compare a polynomial regression with a lasso (Section 2.6.1). A rea-

sonable procedure is: (i) choose the best polynomial degree and the lasso

tuning parameter λ using data splitting within the training set (that is, dividing

the training set into two parts: training and validation), and (ii) compare the

performance of the best polynomial regression with the best lasso (according

to criterion (i)) on the test set. This way, the test will be used to compare only

two models. Alternatively, we can replace (i) with cross-validation within the

training set.

Cross-validation or data-splitting over a fine grid of tuning parameters

can be computationally expensive, particularly when dealing with numerous

tuning parameters or models that are slow to fit, such as certain boosting

algorithms or neural networks. A more efficient alternative is Bayesian opti-

mization (Section 6.2.3).

Confidence Intervals for Risk. Using the test set, we can also create a

confidence interval for the risk. Let (X̃1, Ỹ1), . . . ,(X̃m, Ỹm) be the elements

of the test set (that is, they were not used for training or validation of the

model). An unbiased estimator for the risk of g, obtained using the training

21

2.4. Bias and Variance Tradeoff

and validation sets, is given by

R̂(g) = 1
m

m∑
k=1

L(g(X̃k); Ỹk)︸ ︷︷ ︸
Wk

.

Since R̂(g) is an average of i.i.d. random variables, the Central Limit Theorem

implies that

R̂(g)≈Normal

(
R(g), 1

m
V [W1]

)
.

Moreover, we can estimate V[W1] with

σ̂2 = 1
m

m∑
k=1

(
Wk −W

)2
,

where W = 1
m

∑m
k=1 Wk. Thus, an approximate 95% confidence interval for

R(g) is given by

R̂(g)± 2
√

1
m

σ̂2. (2.7)

Equation 2.7 also provides insight into how to choose the size of the division

between training and validation. We can choose the smallest m such that the

size of the confidence interval for the risk is as small as we want. This idea is

especially interesting when the sample size is large. In this case, the size of the

validation set can be much smaller than the training set, since estimating the

risk is a much easier task than creating a prediction function.

2.4 Bias and Variance Tradeoff

Simplicity is an exact medium

between too little and too much.

Sir Joshua Reynolds

The quadratic loss function of Equation 2.1 is such that its risk can be

22

Chapter 2. Review of Supervised Learning

Figure 2.2: Typical behaviour of the bias and the variance of a model as a

function of its complexity.

decomposed as
1

R(g) =
∫

V[Y |X = x]dP(x) +
∫

(r(x)−E[g(X)|X = x])2 dP(x)

+
∫

V[g(X)|X = x]dP(x).

This decomposition has the following three key components:

• V[Y |X = x], which is the intrinsic variance of the response variable, which

does not depend on the chosen function g and thus cannot be reduced;

• (r(x)−E[g(X)|X = x])2
is the square of the estimator g bias; and

• V[g(X)|X = x] is the variance of the estimator g.

The values of the last two items can be reduced if we choose an appropriate

g. Roughly speaking, complex models (e.g. models with many parameters)

have low bias but high variance since they are hard to estimate. In contrast,

models that are less flexible have low variance but very high bias as they are too

simplistic to describe the data-generating model. Therefore, to achieve good

predictive power, one should choose the model that has the right amount of

complexity. Figure 2.2 illustrates the trade-off between bias and variance.

1
Notice that in this decomposition, the expectation associated with the risk also integrates

over the randomness inherent to g, reflecting that g itself is an estimated quantity.

23

2.4. Bias and Variance Tradeoff

Exemple 2.2. We revisit the GPD vs Life Expectancy problem of Example 2.1.

Here our goal is to select the best estimator within the class

G =
{

g(x) : g(x) = β0 +
p∑

i=1
βix

i, for p ∈ {1,2, . . . ,50}
}

.

Figure 2.3 (left panel) displays the quadratic error, estimated via cross valida-

tion, for each g ∈G. As the risks for p > 12 are excessively high, we only show

the behavior for p ≤ 12. Figure 2.1 (right panel) demonstrates that, indeed,

minimizing the error on the validation set leads to a good fit.

Figure 2.3: Estimated risk as a function of the number of parameters in poly-

nomial regression for predicting Life Expectancy based on GDP per Capita.

The panel on the right illustrates the best-performing model, selected through

data-splitting.

The bias-variance tradeoff also occurs for other loss functions. However,

the details are somewhat different. SupposeG is a class of prediction functions

(for example, all classifiers based on logistic regression),

Ror := inf
g∈G

R(g)

is the best risk (that is, the oracle risk) that can be achieved using prediction

functions from G, and

R∗ := inf
g:X −→Y

R(g)

24

Chapter 2. Review of Supervised Learning

is the risk of the best prediction function among all prediction functions. Then,

for all g ∈G,

R(g) = R∗ + T1 + T2,

where R∗ is the risk of the best prediction function (a general version of the

intrinsic variance), T1 = Ror−R∗ is the approximation error (a general version

of the bias), and T2 = R(g)−Ror is the estimation error (a general version of

the variance). Thus, G cannot be too large or too small.

2.5 Tuning Parameters

The role of the parameter p (degree of the polynomial) in Example 2.1 is

to control the trade-off between bias and variance. The optimal value of p

depends on n and r(x). The parameter p is called a tuning parameter. Other

examples of tuning parameters include λ in the lasso, the number of neighbors

k in k-nearest neighbors, the depth of a decision tree in tree-based models, and

the learning rate η in gradient boosting or neural networks.

Several regression methods have one or more tuning parameters. In this

book, we will always choose them through cross-validation or data splitting,

although these are not the only ways to do this (see, for example, Wasserman

2006).

2.6 Methods to Create Prediction Functions

Next, we investigate several approaches to estimate regression functions

and perform classification.

2.6.1 Parametric Methods

Nature is pleased with simplicity.

And nature is no dummy.

Sir Isaac Newton

One way to create a prediction function g is to (i) parameterize it (that

is, assume it belongs to a class of functions that can be described by a finite

25

2.6. Methods to Create Prediction Functions

number of parameters), (ii) find parameter values for the parameters that lead

to a function that has good fit. In practice, step (ii) is done by designing and

optimizing a loss function.

Some examples of methods that fall into this framework are:

• [Linear regression via least squares] Linear regression uses a linear

form for the prediction function, meaning that the prediction function

used can be written as

g(x) = β⊺x = β0x0 + β1x1 + . . . + βdxd, (2.8)

where we adopt the convention x0 ≡ 1, and where β = (β0, . . . ,βd). Note

that xi is not necessarily the i-th original variable; we can create new

covariates that are functions of the original ones (e.g., x2
i ,xixj , etc.; see

Example 2.1). One way to estimate the coefficients β of linear regression

is by using the method of least squares, which consists of finding the

solution to

β̂ = argmin
β

1
n

n∑
i=1

(Yi−β0−β1xi,1− . . .−βdxi,d)2, (2.9)

which mimics the squared loss function. The prediction function is then

given by g(x) = β̂⊺x.

• [Lasso and Ridge Regression] The lasso (Tibshirani, 1996) also assumes

a linear form for the regression function. However, it instead minimizes

the function

1
n

n∑
i=1

(Yi−β0−β1xi,1− . . .−βdxi,d)2 + λ

d∑
j=1
|βj |, (2.10)

where λ is a tuning parameter. The L1 penalty

∑d
j=1 |βj | decreases

the variance of the least-squares solution, thus leading to a smaller risk

if there is not much increase in the bias. This is the case when several

covariates are not useful to predict Y and therefore have small coefficients

βj . The solution induced by Equation 2.10 has many zeros (that is, the

vector β̂ is sparse). Therefore, the resulting model is also easy to interpret.

26

Chapter 2. Review of Supervised Learning

An alternative to the lasso is ridge regression (Hoerl and Kennard, 1970),

which instead minimizes the function

1
n

n∑
i=1

(Yi−β0−β1xi,1− . . .−βdxi,d)2 + λ

d∑
j=1

β2
j , (2.11)

that is, an L2 penalty is used. Unlike the lasso, ridge regression shrinks

the coefficients (and thus reduces the variance of the least squares solu-

tion) without forcing them to zero. Additionally, ridge regression offers

a closed-form solution for the coefficients, which can be computationally

advantageous.

• [Logistic Regression] In a binary classification problem (that is, K = 2),

a logistic regression assumes that

P(Y = 1|x) = eβ0+
∑d

i=1 βixi

1 + eβ0+
∑d

i=1 βixi

.

The coefficients β are often estimated by maximizing the log-likelihood

function

n∑
k=1

log

 eβ0+
∑d

i=1 βixk,i

1 + eβ0+
∑d

i=1 βixk,i

yk(
1

1 + eβ0+
∑d

i=1 βixk,i

)1−yk
 .

This corresponds to minimizing the cross-entropy between the vector

(y1, . . . ,yn) and the estimated probabilities. Similarly to the lasso, a

penalty that decreases the variance of this estimator may be introduced.

Once the probabilities are estimated, a classifier can be chosen via

g(x) = I
(
P̂(Y = 1|x) > K

)
,

which mimics the Bayes classifier (Theorem 2) and K is given by the loss

function. Alternatively, other metrics for classification can be used to

choose K, such as the sensitivity and the specificity.

Although a parametric model may be incorrect in the sense that the best pre-

27

2.6. Methods to Create Prediction Functions

diction function does not precisely align with the specified parametric shape,

it can still yield good predictions. This is primarily because the parametric

assumption substantially reduces the estimation error (as discussed in Section

2.4) of the model.

2.6.2 K-Nearest Neighbors

We’re neighbors and we’re going

to pull together.

Rick Perry

The k-nearest neighbors (KNN) (Benedetti, 1977; Stone, 1977) is a nonpara-

metric approach to create prediction functions. As the name implies, KNN

constructs a prediction function, denoted as g(x), by considering the labels of

the closest neighbors to a given point x within the training dataset. Specifically,

in the context of regression, the KNN estimate for the regression function is

defined as

g(x) = 1
k

∑
i∈Nx

yi, (2.12)

where Nx is the set of the k observations closest to x, that is,

Nx =
{

i ∈ {1, . . . ,n} : d(xi,x)≤ dk
x

}
,

and dk
x is the distance from the k-th nearest neighbor of x to x. In other words,

the regression function evaluated at x is estimated using a local average of the

responses of the k nearest neighbors to x in the covariate space.

The tuning parameter k can be chosen through cross-validation. A high

value of k leads to a very simple model (approaching a constant as k −→∞),

resulting in high bias but low variance. Conversely, a low value of k leads to

an estimator with high variance but low bias.

In a classification context, Equation 2.12 can be replaced by a majority

voting mechanism. Specifically, the predicted class label ŷ(x) for a given point

x is determined by the most frequent class among its k nearest neighbors.

28

Chapter 2. Review of Supervised Learning

Formally, this can be expressed as:

g(x) = argmax
c∈Y

∑
i∈Nx

I(yi = c).

Alternatively, probabilities of each class can be estimated by calculating the

proportion of neighbors that belong to each class. This probabilistic version of

KNN assigns a probability to each class label based on the relative frequency of

that label among the k nearest neighbors. Formally, the estimated probability

that a point x belongs to class c is given by:

P̂(Y = c|x) = 1
k

∑
i∈Nx

I(yi = c).

2.6.3 Trees

Trees are a non-parametric approach that provides highly interpretable

results. They are built by recursively partitioning the covariate space, where

each division forms a node, and each endpoint represents a leaf; see Figure 2.4

for an example.

To predict a new observation, we start at the top of the tree and evaluate

the condition at the root node. If the condition is met, we proceed left; if not,

we go right. This process repeats at each node until reaching a leaf.

Number of bedrooms ≤ 2

$80,000 Size ≤ 1200 sq ft

$120,000 $200,000

Figure 2.4: Regression tree that predicts the price of an apartment.

Formally, a tree creates a partition of the covariate space into distinct and

disjoint regions: R1, . . . ,Rj . In a regression context, the prediction for the

29

2.6. Methods to Create Prediction Functions

response Y of an observation with covariates x that are in Rk is given by

g(x) = 1
|{i : xi ∈Rk}|

∑
i:xi∈Rk

yi. (2.13)

To predict the response value for x, we identify the region to which x belongs

and calculate the average of the response variable values for the training sam-

ples within this region. In classification, this aggregation can instead use the

mode of the Y values that fall within Rk, for example.

The construction of a tree structure involves two main steps: (i) growing a

fully developed, complex tree, and (ii) pruning it to avoid overfitting.

In step (i), the objective is to form "pure" partitions, where the values of Y

in each leaf’s training observations are as homogeneous as possible. Achieving

this requires defining a measure of leaf homogeneity for a tree T . In regression

tasks, the mean squared error is often used:

P(T) =
∑
R

∑
i:xi∈R

(yi− ŷR)2

n
,

where ŷR is the predicted response value for observations within region R.

For classification tasks, the Gini index is frequently applied:∑
R

∑
c∈Y

p̂R,c(1− p̂R,c),

where p̂R,c denotes the proportion of observations in region R classified as

belonging to category c.

Finding the optimal tree T to minimize P(T) is practically infeasible due to

computational complexity. Instead, we use a heuristic approach to construct

a tree with high homogeneity by making recursive binary splits, as shown in

Figure 2.5.

The algorithm begins by dividing the covariate space into two distinct

regions, illustrated in Figure 2.5(a). To determine the first partition (R1,R2),
we systematically explore all combinations of covariates xi and potential cut

points t1, selecting the combination that maximizes homogeneity within each

30

Chapter 2. Review of Supervised Learning

region. Thus, we define

R1 = {x : xi < t1} and R2 = {x : xi ≥ t1}.

Condition (i)

R1 R2

(a)

Condition (i)

Condition (ii)

R1,1 R1,2

R2

(b)

Condition (i)

Condition (ii)

R1,1 R1,2

Condition (iii)

R2,1 R2,2

(c)

Condition (i)

Condition (ii)

Condition (iv)

R1,1,1 R1,1,2

R1,2

Condition (iii)

R2,1 R2,2

(d)

Figure 2.5: Recursively growing a tree.

31

2.6. Methods to Create Prediction Functions

After establishing these initial regions, the root node of the tree is set. In

the next step, we aim to further split either R1 or R2, as shown in Figure 2.5(b).

To identify the optimal new split, we apply the same strategy: exploring all

combinations of covariates xi and cut points t2 to find the configuration that

maximizes homogeneity. At this stage, we must also choose which region to

split, either R1 or R2. Suppose we opt to partition R1 using covariate xj and

cut point t2. This results in the subregions {R1,1,R1,2}, illustrated in Figure

2.5(b). Thus, we define

R1,1 = {x : xi < t1,xj < t2}, R1,2 = {x : xi < t1,xj ≥ t2}, and

R2 = {x : xi ≥ t1}.

This recursive procedure continues, as illustrated in Figures 2.5(c) and (d),

until the tree reaches a stage where each leaf node contains only a small,

predetermined number of observations. For instance, the process may be

halted once all leaf nodes contain fewer than five observations.

The tree generated by this process performs well on the training set, but it

tends to overfit, resulting in poor predictive performance on new observations.

To address this, we proceed to step (ii), known as pruning. The aim here is to

reduce the tree’s size and complexity, thus lowering the variance of the esti-

mator. During pruning, nodes are removed one at a time, and the prediction

error on a validation set is evaluated. Based on these results, decisions are

made regarding which nodes should remain in the tree.

2.6.4 Bagging and Random Forests

Regression trees are highly interpretable, but they often have lower pre-

dictive power compared to other estimators. Bagging and random forests

(Breiman, 2001b) address this limitation by combining multiple trees to im-

prove predictions for the same problem.

To illustrate this approach, imagine a regression scenario where we have

two prediction functions for Y , g1(x) and g2(x). The risks associated with

these (conditional on x) are given by

E
[
(Y − g1(x))2|x

]
and E

[
(Y − g2(x))2|x

]
,

32

Chapter 2. Review of Supervised Learning

respectively. Now, consider the combined estimator g(x) = g1(x)+g2(x)
2 . Then

we have

E
[
(Y − g(x))2 |x

]
= V[Y |x] + 1

4V[g1(x) + g2(x)|x]+(
E[Y |x]− E[g1(x)|x] +E[g2(x)|x]

2

)2
.

If g1(x) and g2(x) are uncorrelated (that is, Cor(g1(x),g2(x)|x) = 0), unbiased

(that is, E[g1(x)|x] = E[g2(x)|x] = r(x)), and have equal variance (that is,

V[g1(x)|x] = V[g2(x)|x]), then

E
[
(Y − g(x))2 |x

]
= V[Y |x] + 1

2V[gi(x)|x]≤ E
[
(Y − gi(x))2|x

]
(2.14)

for i = 1,2. This shows that it is preferable to use the combined estimator

g(x) over either g1(x) or g2(x) alone. Although this example considers only

two estimators, the same principle applies when combining any number B of

estimators.

Building on this concept, bagging – short for "bootstrap aggregating" –

works by generating B distinct trees from B bootstrap samples of the original

dataset
2
. Each tree is constructed following the steps in Section 2.6.3 but

without pruning, allowing each tree to grow fully. After building the trees,

bagging combines their predictions to produce a more stable estimator. In

regression, the aggregated prediction function is

g(x) = 1
B

B∑
b=1

gb(x),

where gb(x) represents the prediction from the b-th tree. In classification, the

final prediction is obtained by taking the majority vote across all trees.

Random forests extend the concept of bagging by introducing extra ran-

domness into the tree-building process. In addition to using bootstrap samples,

random forests select a random subset of features at each node split, which

decreases the correlation between trees and improves predictive accuracy over

2
A bootstrap sample is a random sample with replacement that matches the original sample

size.

33

2.6. Methods to Create Prediction Functions

bagging alone. Specifically, instead of considering all d covariates at each

node, a random subset of m < d covariates is chosen for each split. These m

covariates are randomly drawn from the full set, with a new subset selected at

each node as the tree expands. In classification tasks, a common choice is to

select

√
p features from a total of p features at each split, while in regression,

typically p/3 features are used.

2.6.5 Boosting

Like random forests and bagging, boosting aggregates multiple prediction

functions, but it combines them in a distinct manner. Boosting iteratively builds

new models to correct errors made by previous ones, refining predictions with

each step. Various implementations and variations of boosting exist; here, we

will focus on a single approach in the regression context.

In boosting, the estimator g(x) is built incrementally. Initially, we set g(x)≡
0, resulting in an estimator with high bias but minimal variance (specifically,

zero). At each step, we adjust g to reduce bias while carefully managing an

increase in variance. This is achieved by adding a function that predicts the

residuals ri = Yi − g(xi). A common choice for this function is a regression

tree, but to prevent overfitting, this tree is typically shallow. Furthermore,

instead of adding this function directly, we multiply it by a factor λ, known

as the "learning rate," which takes a value between 0 and 1 to further guard

against overfitting. Formally, this version of boosting follows the following

algorithm:

1. Define g(x)≡ 0 and ri = yi ∀i = 1, . . . ,n.

2. For b = 1, . . . ,B:

(a) Fit a tree with p leaves to (x1, r1), . . . ,(xn, rn). Let gb(x) be its re-

spective prediction function.

(b) Update g and the residuals: g(x)← g(x)+λgb(x) and ri← Yi−g(x).

3. Return the final model g(x).

In this version of boosting, the key tuning parameters are B, p, and λ.

Unlike random forests, large values of B can lead to overfitting, so B is typically

selected through data splitting.

34

Chapter 2. Review of Supervised Learning

x1

x2

x3

x1
1

x1
2

x1
3

x1
4

x1
5

x2
1 gβ(x)

Hidden

Layer

Input

Layer

Output

Layer

Figure 2.6: Example of a neural network with one hidden layer.

Modern boosting implementations, such as XGBoost (Chen and Guestrin,

2016), LightGBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al., 2018),

have enhanced the method with optimizations like gradient-based learning,

regularization, parallel processing, and efficient handling of categorical vari-

ables. These advancements make boosting more accurate and scalable.

2.6.6 Artificial Neural Networks

With four parameters I can fit an

elephant, and with five I can make

him wiggle his trunk.

John von Neumann

Artificial neural networks are a well-established concept in artificial intel-

ligence and dates back to the 1940’s (McCulloch and Pitts, 1943; Rosenblatt,

1958).

Structure. Neural networks parametrize the function that is being esti-

mated. In the context of regression, they function as a non-linear estimator of

r(x) and can be visually represented by a structure similar to that shown in

Figure 2.6.

The nodes on the left side of the figure represent the network inputs,

35

2.6. Methods to Create Prediction Functions

xl
2 βl

2,1 Σ a

Activation

Function

xl+1
1

Output

xl
1 βl

1,1

xl
3 βl

3,1

Weights

Intercept

βl
0,1

Inputs (Layer l)

Figure 2.7: Example of the processing that occurs within a neuron located in

layer l + 1. The output xl+1
1 is given by a

(
βl

0,j +
∑3

i=1 βl
i,1xl

i

)
.

corresponding to the dataset covariates (three in this example). The nodes

in the second layer, called hidden layer nodes, apply transformations to the

inputs from the previous layer. Each arrow represents a weight β (a parameter

in statistical terms) associated with a connection. These weights control how

each node in the hidden layer combines the inputs from the previous layer.

For this network, if x = (x1,x2,x3) is the input vector, the output of a neuron

j in the hidden layer is computed as

x1
j := a

(
β0

0,j +
3∑

i=1
β0

i,jx0
i

)
, where x0

i = xi for i = 1,2,3,

with a representing a user-defined function called the activation function. The

superscript indicates the layer in the network. Once all x1
j values for neurons j

in the hidden layer are computed, the model output can be calculated. In this

example, the output is given by

x2
1 := a

(
β1

0,1 +
5∑

i=1
β1

i,1x1
i

)
=: gβ(x).

This process is illustrated in detail in Figure 2.7.

Some common choices for the activation function are:

36

Chapter 2. Review of Supervised Learning

• Identity: a(z) = z

• Logistic: a(z) = 1
1+e−z

• Hyperbolic Tangent: a(z) = ez−e−z
ez+e−z

• ReLU (Rectified Linear Unit): a(z) = max{0,z}

• Leaky ReLU: a(z) =

0.01z if z < 0

z if z ≥ 0

In general, a neural network can have multiple hidden layers and a different

number of neurons in each layer. These are choices made by the user. Figure

2.8 presents a schematic of a neural network with four hidden layers, each with

six neurons.

x1

x2

x3

Hidden

Layer 1

Hidden

Layer 2

Hidden

Layer 3

Hidden

Layer 4

y1

Input

Layer

Output

Layer

Figure 2.8: Example of a feed-forward neural network.

The propagation of input covariates in the neural network is done sequen-

tially through these layers. Consider a network with H hidden layers, each

with dh neurons (h = 1, . . . ,H), and let βl
i,j be the weight assigned to the con-

nection between input i in layer l and output j in layer l +1, l = 0, . . . ,H . Here,

h = 0 denotes the input layer, and H+1 denotes the output layer. The estimator

37

2.6. Methods to Create Prediction Functions

of an artificial neural network for the regression function takes the form

g(x) = xH+1
1 = a

βH
0,1 +

dH∑
i=1

βH
i,1xH

i

 (2.15)

where, for all l = 1, . . . ,H and j = 1, . . . ,dl+1,

xl+1
j = a

βl
0,j +

dl∑
i=1

βl
i,jxl

i

 .

Notice that if a(z) = z and there are no hidden layers, a neural network

represents a regular linear regression. Indeed, as a linear regression, a neural

network also parametrizes g. However, such parametrization is typically more

complex, and the architecture of the network (and therefore its parametriza-

tion) is usually taylored for each dataset.

Another way to represent a neural network is through matrix notation. For

l = 0, . . . ,H , let

Hl =

βl

0,1 βl
1,1 . . . βl

dl,1
...

...
. . .

...

βl
0,dl+1

βl
1,dl+1

. . . βl
dl,dl+1

be the collection of all weights associated to the l-th layer of a network. In

this case, d0 = d is the number of neurons in the input layer, and dH+1 is the

number of neurons in the output layer. The estimator of Equation 2.15 can be

written as the following composition of functions:

g(x) = a ◦HH . . . ã ◦H1 · ã ◦H0 · x̃,

where x̃ = (1,x) and ã(y) = (1,a(y)).
The structure of neural networks discussed here can be highly generalized.

For example, each function a applied at each layer may differ, and the network’s

output need not be limited to a single real number. Neural networks can also

accommodate more complex architectures, such as feedback loops, where

outputs from neurons are fed back into earlier layers.

38

Chapter 2. Review of Supervised Learning

In classification tasks, the network’s output typically consists of K values:

g0(x), . . . ,gK−1(x),

representing estimates of the probabilitiesP(Y = i|x) for i = 0, . . . ,K−1. Figure

2.9 provides an illustration of a typical classification network architecture.

x1

x2

x3

gβ;1(x)

gβ;2(x)

gβ;3(x)

gβ;4(x)

Hidden

Layer

Input

Layer

Output

Layer

Figure 2.9: Example of a classification neural network with one hidden layer

in the case where Y takes four possible values.

To produce these probability estimates, the softmax function is commonly

used as the activation function in the final layer. The softmax function is

defined as:

ai(z) = ezi∑K−1
j=0 ezj

,

where z represents the vector of inputs in the last layer, and ai is the activation

applied to the i-th neuron in the output layer. This function ensures that all

output values fall within the range of zero to one and that the outputs sum to

one, making them interpretable as probabilities. The softmax function can be

seen as a generalization of the logistic function to multiple classes.

Estimation. To estimate the parameters of a neural network, a differentiable

loss function must first be defined. In regression tasks, the mean squared error

39

2.6. Methods to Create Prediction Functions

is commonly used:

MSE(gβ) = 1
n

n∑
i=1

(
gβ(xi)− yi

)2
,

where β represents all the network parameters, encompassing the collection

of matrices H0, . . . ,HH .

For classification tasks, the cross-entropy loss is typically used:

CE(gβ,0, . . . ,gβ,K−1) =− 1
n

n∑
i=1

K−1∑
j=0

I(yi = j) log(gβ;j(xi)).

In this case, gβ;j(xi) represents the estimated probability for class j given input

xi, and I(yi = j) is an indicator function that equals 1 if yi = j and 0 otherwise.

Once the loss function is defined, the next step is to minimize it with

respect to the parameters β of the neural network. This is typically done using

gradient-based optimization methods, such as gradient descent or its variants

(e.g., stochastic gradient descent, Adam). The gradient of the loss function

with respect to the parameters β is computed using backpropagation, which

efficiently applies the chain rule to propagate the error backward through the

network layers.

The optimization process iteratively updates the parameters β in the direc-

tion that decreases the loss function, aiming to reach a minimum. However,

reaching the true global minimum of the loss function may not be desirable.

For instance, consider the behavior of the 50-degree polynomial fit used to

minimize the MSE in Example 2.1. Such a fit, while minimizing the training

error, can lead to overfitting. Therefore, in practice regularization needs to

be performed to ensure that the resulting estimated function is smooth and

generalizes effectively to new, unseen data.

Early stopping is one such technique used to prevent overfitting. It halts the

training process before the model fully converges to the minimum of the loss

function, stopping when the validation loss stops improving, which signals

the onset of overfitting. The best model parameters (those that resulted in the

lowest validation loss) are then used as the final model. Figure 2.10 illustrates

early stopping.

40

Chapter 2. Review of Supervised Learning

Figure 2.10: Training and validation loss over iterations during the training

process of a neural network. The training loss decreases as the model learns,

while the validation loss initially declines but later rises due to overfitting. The

dashed vertical line indicates the epoch where early stopping is implemented,

halting training to prevent overfitting.

In addition to early stopping, the choice of optimization method plays a

crucial role in preventing poor generalization. One of the most commonly

used methods is stochastic gradient descent (SGD). Unlike batch gradient

descent, which computes gradients using the entire training set, SGD updates

the model parameters based on gradients computed from a single training

sample point or a small mini-batch B ⊂ {(X1,Y1), . . . ,(Xn,Yn)}. The batch

being used changes at each iteration. This prevents the model from settling

into sharp minima – often associated with overfitting – and encourages finding

flatter minima that give better predictions.

Another widely used technique to prevent overfitting in neural networks

is dropout. Dropout is a regularization method where, during each training

iteration, a random subset of neurons in the network is "dropped out," or

temporarily removed from the network (that is, set to zero). This forces the

network to learn more robust features that are not reliant on specific neurons, as

different subsets of neurons are active at different times. At test time, dropout

is turned off, and the full network is used, but with the weights scaled down

to account for the dropped neurons during training. In Section 6.4 we discuss

how dropout can also be used for UQ.

41

2.7. The Myth of Imbalanced Data

For a more in-depth exploration of neural networks, we recommend refer-

ring to Goodfellow et al. (2016) and Zhang et al. (2021).

2.7 The Myth of Imbalanced Data

Myths which are believed in tend

to become true.

George Orwell

Imbalanced data is often considered problematic in binary classification

because the classifier frequently defaults to a trivial classifier. A trivial classifier

is one that always predicts the majority class, regardless of the input features.

This can happen because, when using a cutoff of 0.5 (which is the default

choice in most implementations) in the plugin classifier

g(x) =

1, if P̂(Y = 1|x)≥ 0.5,

0, otherwise,

the model will always predict the majority class in highly imbalanced datasets.

For example, if the probability of Y = 1 is very low, say 0.01, the classifier will

often predict Y = 0, leading to the trivial classifier g(x)≡ 0 (always predicting

0) when there is not too much information in the covariates to distinguish

between classes.

However, the real issue of the problem is not imbalanced. Instead, the

issue is that the choice 0.5 implicitly assumes equal costs for classification

errors (Theorem 2), which is rarely true in practice. For instance, in medical

diagnostics for a rare disease, misclassifying a sick patient (Y = 1) as healthy

(Y = 0) is far more costly than the reverse. In such cases, relying on the 0.5

threshold leads to an overly conservative classifier that frequently misses true

positives, especially when the disease is rare.

The misconception that imbalanced data itself is the core issue arises be-

cause, when the data is imbalanced, the triviality of the classifier makes the

problem evident. However, the real problem lies with the zero-one loss func-

tion that does not capture the asymmetric nature of the problem.

42

Chapter 2. Review of Supervised Learning

A common solution to this problem is oversampling, which artificially

balances the dataset by increasing the representation of the minority class.

However, oversampling merely repeats the same data and therefore does not

add new information. Instead, a better and faster solution lies in adjusting

the loss function or modifying the decision cutoff to reflect the actual costs

of misclassification. In fact, as shown in Assunção et al. (2024), oversampling

is essentially equivalent to adjusting the decision threshold to C = P(Y =
1). The cutoff approach however is more general and allows for other costs.

Assunção et al. (2024) also discuss other data augmentation techniques that, in

some cases, can be more effective than oversampling because they introduce

additional information rather than simply repeating existing data.

Despite these issues, hundreds of posts on platforms like Towards Data

Science and Medium continue to advocate oversampling as the primary so-

lution, overlooking the fact that the real issue lies in the inadequacy of the

zero-one loss function and the inappropriate use of the 0.5 threshold, not the

class imbalance itself.

2.8 Summary

In this chapter, we reviewed the fundamentals of supervised learning,

where the goal is to predict a target variable (label) Y using a set of input

43

2.8. Summary

variables (features) x. We saw that this task can be categorized as regression

when Y is quantitative and classification when Y is qualitative.

We explored the concepts of loss functions and risk, emphasizing that dif-

ferent loss functions lead to different optimal solutions, such as the regression

function in regression problems and the Bayes classifier in classification prob-

lems. We discussed the importance of model selection and saw how challenges

like overfitting and underfitting can impact model performance. Techniques

like data splitting, cross-validation, and understanding the bias-variance trade-

off were introduced as essential tools for improving model selection and pre-

dictive accuracy.

The chapter also introduced various supervised learning methods. We saw

examples of parametric methods, like linear regression, lasso, and logistic re-

gression, which involve specific assumptions about the form of the prediction

function. These methods generally have low variance but high bias. On the

other hand, non-parametric methods, such as k-nearest neighbors and deci-

sion trees, were discussed for their flexibility in modeling data due to their low

bias. These however have high variance, and thus generally require larger sam-

ple sizes. We also explored non-parametric ensemble methods like bagging,

random forests, and boosting, which combine multiple models to enhance pre-

dictive performance. Lastly, we examined neural networks, highlighting their

ability to capture complex relationships through highly flexible, parameterized

functions, with the parametrization determined by the network’s architecture.

44

Chapter 3

Quantifying Aleatoric
Uncertainty with Conditional
Densities

Under the Wave off Kanagawa. Katsushika Hokusai, 1831, The Metropolitan

Museum of Art, New York.

3.1. Loss Functions

Prediction is very difficult,

especially if it is about the future.

Niels Bohr

Instead of focusing on a single point prediction g(x) for Y , it is often

more useful to understand the uncertainty around Y . This chapter focuses

on estimating the conditional density f(y|x), which captures the aleatoric

uncertainty in Y for both discrete and continuous labels. Chapters 5 and 6 will

explore epistemic uncertainty.

In classification problems, for example, f(y|x) = P(Y = y|x) allows us

to answer questions like, "What is the probability that the predicted label is

correct?" This probability is P(Y = g(X)|x) = f(g(x)|x).
The density f(y|x) gives the full distribution of Y |x and can also be used

to derive quantities like the regression function E[Y |x] =
∫

yf(y|x)dy, which

can be estimated using f̂(y|x). Quantiles of Y |x can also be directly estimated

from f̂(y|x).
We begin by introducing loss functions for evaluating conditional density

estimators. Next, we cover methods for estimating f(y|x) in classification and

regression settings. Finally, we discuss ways to directly estimate quantiles of

f(y|x).

3.1 Loss Functions

Similar to the standard supervised learning approach (Chapter 2), when it

comes to comparing and fine-tuning different Conditional Density Estimators

(CDEs), it is essential to define a suitable loss function. In this chapter, we

define a loss function as a mapping

L : F ×X ×Y → R

(f̂ ,x,y) 7→ L(f̂ ;x,y),

where f̂ is an estimate of f and F denotes the class of all conditional density

estimates.

46

Chapter 3. Quantifying Aleatoric Uncertainty with Conditional Densities

Typically, loss functions for conditional density estimation are required

to be proper - their implied risk must be minimized by the true conditional

density f(y|x):

Definition 1 (Proper loss function). A CDE loss function L is proper if, and only
if,

f = argmin
f̂∈F

E
[
L(f̂ ;X,Y)

]
,

where f denotes the true conditional density of Y |x.

For a loss function to be useful, it must not only be proper but also have a

risk that is easy to estimate. In the next sections, we explore some examples of

loss functions with these characteristics.

3.1.1 The L2 loss and the Brier Score

The L2-loss is given by

L2(f̂ ;x,y) =
∫ (

f̂(y′|x)− f(y′|x)
)2

dy′,

where the integral is a summation for classification problems.

The L2-risk is therefore given by

E
[
L2(f̂ ;X,Y)

]
=

" (
f̂(y|x)− f(y|x)

)2
dP (x)dy

=
"

f̂2(y|x)dP (x)dy− 2
"

f̂(y|x)dP (x,y) + C, (3.1)

where C is a constant that does not depend on the estimator and P (x,y) is the

joint distribution of (X,Y). It is easy to see from Equation 3.1 that the L2 loss

is proper.

Given a validation sample (X′
1,Y ′

1), . . . ,(X′
m,Y ′

m), the L2-risk can be es-

timated (up to C, which is not required for model selection and parameter

tuning) by

1
m

m∑
i=1

∫
f̂2(y|x′

i)dy− 2 1
m

m∑
i=1

f̂(y′
i|x′

i).

47

3.1. Loss Functions

Notice that, in the classification problem, this estimate can be rewritten as

1
m

m∑
i=1

k−1∑
j=0

f̂2(j|x′
i)− 2 1

m

m∑
i=1

k−1∑
j=0

f̂(j|x′
i)I(y′

i = j)

= 1
m

m∑
i=1

k−1∑
j=0

(
f̂(j|x′

i)− I(y′
i = j)

)2
− 1

m

m∑
i=1

k−1∑
j=0

I(y′
i = j)

= 1
m

m∑
i=1

k−1∑
j=0

(
f̂(j|x′

i)− I(y′
i = j)

)2
− 1.

It follows that minimizing the estimate of the L2-risk is equivalent to minimiz-

ing

1
m

m∑
i=1

k−1∑
j=0

(
f̂(j|x′

i)− I(y′
i = j)

)2
, (3.2)

which is known as the Brier score (Brier, 1950).

3.1.2 The Cross-Entropy Loss (or the Negative Loglikelihood)

Only entropy comes easy.

Anton Chekhov

The cross-entropy loss is defined as

L
CE

(f̂ ;x,y) =− log
(

f̂(y|x)
)

, (3.3)

and therefore the CE-risk is given by

E
[
L

CE
(f̂ ;X,Y)

]
=−E

[
log
(

f̂(Y |X)
)]

.

This risk can be estimated by the observed negative log-likelihood of a

validation sample

− 1
m

m∑
i=1

log
(

f̂(y′
i|x′

i)
)

,

48

Chapter 3. Quantifying Aleatoric Uncertainty with Conditional Densities

which, in the case of classification, is often written as

− 1
m

m∑
i=1

k−1∑
j=0

I(y′
i = j) log

(
f̂(j|x′

i)
)

.

The reason the cross-entropy loss has this name is that its associated risk is

the expected cross-entropy between f and f̂ :

E
[
L

CE
(f̂ ;X,Y)

]
= E

[
E
[
L

CE
(f̂ ;X,Y)|X

]]
= E

[
H
(

f(·|X), f̂(·|X)
)]

,

where H(p,q) =−
∫

p(y) log(q(y))dy denotes the cross-entropy between distri-

butions p and q. Because H(p,q) is minimized when p = q, it follows that the

cross-entropy loss is also proper.

The cross-entropy loss can also be characterized in terms of the Kullback-

Leibler divergence. Indeed,

H
(

f(·|x), f̂(·|x)
)

= H (f(·|x)) + D
KL

(
f(·|x)∥f̂(·|x)

)
,

where H (f(·|x)) = −
∫

f(y|x) logf(y|x)dy is the entropy of the true distribu-

tion f , and

D
KL

(
f(·|x)∥f̂(·|x)

)
=
∫

f(y|x) log f(y|x)
f̂(y|x)

dy,

is the Kullback-Leibler divergence between f and f̂ . As H (f(·|X)) does not

depend on f̂ , this shows that

argmin
f̂∈G

E
[
L

CE
(f̂ ;X,Y)

]
= argmin

f̂∈G
E
[
D

KL

(
f(·|X)∥f̂(·|X)

)]
,

where G is any set of estimated densities. That is, minimizing the expected

cross-entropy loss corresponds to minimizing the expected Kullback-Leibler

divergence between f and f̂ .

The cross-entropy loss is sensitive to the tails of the estimated distribution

because it penalizes small predicted probabilities heavily. When the true

outcome y has a low predicted probability f̂(y|x), the logarithm of this small

value leads to a large loss. This means that even a few low-probability events

49

3.1. Loss Functions

can significantly increase the overall loss, pushing the model to give more

weight to rare or extreme outcomes. While this helps capture infrequent

events, it also makes the model more sensitive to outliers and noise (Bowman,

1985; Hall, 1987).

3.1.3 Continuous Ranked Probability Score (CRPS)

The Continuous Ranked Probability Score (CRPS) is a proper scoring rule

often used to evaluate probabilistic predictions, particularly when dealing

with continuous variables (Gneiting and Katzfuss, 2014; Matheson and Win-

kler, 1976). CRPS measures the accuracy of an estimated conditional density

f̂ through its cumulative distribution function (CDF), F̂ . In the context of

conditional density estimation, the CRPS loss is defined as

L
CRPS

(f̂ ;x,y) =
∫ ∞

−∞

(
F̂ (t|x)− I(y ≤ t)

)2
dt,

where F̂ (t|x) =
∫ t

−∞ f̂(y|x)dy is the estimated CDF for the conditional distri-

bution of Y given x. In simple terms, CRPS represents the squared difference

between the predicted and empirical cumulative distributions.

Matheson and Winkler (1976) show that
1

L
CRPS

(f̂ ;x,y) = E [|Y − y| | x]− 1
2E
[
|Y −Y ′| | x

]
,

where Y and Y ′
are independent random variables with distribution F̂ (·|x),

and both expectations are taken with respect to F̂ (·|x). This leads to two key

observations:

(i) If, for each x, f̂(·|x) is degenerate at a point prediction y0(x), then

L
CRPS

(f̂ ;x,y) = |y0(x)− y|,

showing that CRPS generalizes the absolute error used in point pre-

dictions to density estimators. This property makes CRPS particularly

useful for comparing density estimators with point estimators.

1
While the original definitions and proofs for CRPS are for unconditional distributions, they

naturally extend to conditional distributions.

50

Chapter 3. Quantifying Aleatoric Uncertainty with Conditional Densities

(ii) L
CRPS

(f̂ ;x,y) is in the same units as Y .

The next theorem shows that CRPS is proper.

Theorem 3. The loss LCRPS(f̂ ;X,Y) is proper.

Proof. Let F (y|x) denote the true CDF of Y |x. We begin by considering the

expected CRPS loss conditioned on a fixed X = x:

E
[
L

CRPS
(f̂ ;X,Y)

∣∣x]= E
[∫ ∞

−∞

(
F̂ (t|x)−F (t|x) + F (t|x)− I(Y ≤ t)

)2
dt
∣∣∣x] .

Expanding the square and changing the order of expectation and integration,

we have:

E
[
L

CRPS
(f̂ ;X,Y)|x

]
= E

[∫ ∞

−∞

(
F̂ (t|x)−F (t|x)

)2
dt|x

]
+ 2
∫ ∞

−∞

(
F̂ (t|x)−F (t|x)

)
E [(F (t|x)− I(Y ≤ t))dt|x]

+
∫ ∞

−∞
E
[
(F (t|x)− I(Y ≤ t))2 |x

]
dt.

Now, notice that

• The first term represents the squared distance between F̂ and F and is

minimized when F̂ (·|x) = F (·|x).

• The second term equals zero. This follows from the fact that

E
[
F (t|x)− I(Y ≤ t)

∣∣x]= F (t|x)−E
[
I(Y ≤ t)

∣∣x]= F (t|x)−F (t|x) = 0.

• The third term does not depend on F̂ .

Therefore, minimizingE
[
L

CRPS
(f̂ ;X,Y)

∣∣x] reduces to minimizing the first

term, which occurs when F̂ (·|x) = F (·|x). Since this holds for every fixed

x ∈ X , the proof is complete.

The derivation of Theorem 3 offers an additional insight. The risk as-

sociated with L
CRPS

, up to a constant K independent of f̂ , corresponds to

51

3.1. Loss Functions

the Harald Cramér distance between F̂ (·|x) and F (·|x), d
HC

, averaged over x
(Cramér, 1928):

E
[
L

CRPS
(f̂ ;X,Y)

]
=
∫ ∞

−∞

(
F̂ (t|x)−F (t|x)

)2
dtdP (x) + K

=
∫

d2
HC

(
F̂ (·|x),F (·|x)

)
dP (x) + K,

which is also equivalent to the energy distance between F̂ (·|x) and F (·|x)
(Székely and Rizzo, 2013; Székely, 2003).

3.1.4 Accuracy, F1-scores and Related metrics: Improper Met-
rics for Probabilistic Classification

Accuracy, defined as 1−P(Y , g(X)) (Section 2.2), is widely used to tune

hyperparameters in many machine learning frameworks and libraries. For

example, in Python’s scikit-learn, accuracy is often the default evalua-

tion metric for probabilistic classification models, particularly in functions like

GridSearchCV andRandomizedSearchCV. Until recently, this was also true

for XGBoost’s eval_metric parameter, which now defaults to logloss. How-

ever, the default scoring method for XGBoost remains accuracy, meaning that

functions like GridSearchCV still rely on accuracy when tuning XGBoost

52

Chapter 3. Quantifying Aleatoric Uncertainty with Conditional Densities

models.

Although accuracy can yield reasonable results for classification tasks, us-

ing it to tune parameters can lead to suboptimal models when uncertainty

quantification is important. This occurs because accuracy is an improper met-

ric for probabilistic models.

To demonstrate this, consider two probabilistic models. The first, P̂(Y =
y|x), perfectly estimates the class probabilities, meaning P̂(Y = y|x) = P(Y =
y|x). The second model, P̂′(Y = y|x), distorts the true probabilities by pushing

them closer to 0.5 when they are near 0 or 1, and moving them further from

0.5 when they are close to it. Specifically, the model is defined as (see Figure

3.1):

P̂′(Y = y|x) =

3
2 −P(Y = y|x), if P(Y = y|x) > 1

2
1
2 −P(Y = y|x), otherwise

Figure 3.1: True class probabilities P(Y = y|x) and distorted probabilities

P̂′(Y = y|x). While both P and P′
result in classifiers with identical accuracy,

P′
provides poor probability estimates.

This manipulated model, P̂′(Y = y|x), produces the same classification

decisions as the perfectly calibrated model, P̂(Y = y|x). This occurs because

the decision boundary remains unchanged:

P̂(Y = y|x) > 1/2 if and only if P̂′(Y = y|x) > 1/2.

As a result, both models achieve identical accuracy, but P̂′
distorts probabilities,

53

3.3. Parametric Approaches

shifting them toward 0.5 when certainty is high and away from 0.5 when

uncertainty is greater, thus failing to quantify uncertainty properly.

Any model that shifts probabilities above 0.5 higher and those below 0.5

lower will achieve the same accuracy as P̂(Y = y|x). This limitation also affects

metrics based solely on fixed-threshold classification decisions, such as the F1-

score and balanced accuracy. Consequently, tuning models using these metrics

can lead to poorly calibrated probabilities, distorting uncertainty. This issue

is especially critical when reliable probabilistic rankings of observations are

needed.

3.2 Probabilistic Classifiers

There is a plethora of methods to estimate f(y|x) in classification problems:

probabilistic classification’s goal is to estimate f(y|x). Many of the methods

seen in Chapter 2 (such as the logistic regression) directly estimate such den-

sities.

Regression can also be used to obtain probabilistic classifiers. Indeed, for a

fixed i, consider the transformed variable Z := I(Y = i). Then, by construction,

the regression of Z on x is

E[Z|x] = P(Y = i|x) = f(i|x).

Notice also that the mean squared error for estimating Z is the Brier Score for

estimating I(Y = i) (recall Equation 3.2). This suggests that by using regression

methods toE[Z|x] one is effectively estimating P(Y = i|x) using the Brier Score

to tune parameters and do model selection.

3.3 Parametric Approaches

Statistical models often imply a conditional density model. For instance, in

a standard Gaussian linear regression model, the assumption is that

Y |x∼N
(
β⊺x;σ2) .

54

Chapter 3. Quantifying Aleatoric Uncertainty with Conditional Densities

Generalized linear models (GLM; Nelder and Wedderburn 1972) extend this

model by allowing the conditional density to be other members within the

exponential family.

The parameters of such models can be estimated for instance via maxi-

mum likelihood estimation. Denoting by θ the parameters of the model, this

corresponds to obtaining

θ̂ = argmax
θ
L(θ;D) = argmax

θ

n∏
i=1

fθ(yi|xi)f(xi) = argmax
θ

n∏
i=1

fθ(yi|xi),

whereD denotes the full dataset and we use the notation fθ(y|x) to emphasize

the dependency of the conditional model on θ. Once θ̂ is obtained, an estimate

of the conditional density, f̂(y|x) := f
θ̂
(y|x), is readily available.

For instance, in the Gaussian linear model, the estimated conditional den-

sity is given by

f̂(y|x) = 1√
2πσ̂2

e
− (y−β̂⊺x)2

2σ̂2 ,

where

β̂ = (X⊺X)−1X⊺Y, (3.4)

is the least squares solution, with

X =

x1
...

xn

being the design matrix, Y = (y1, . . . ,yn), and

σ̂2 = 1
n

n∑
i=1

(
yi− β̂⊺xi

)2
. (3.5)

Of course, other estimators of β (such as the lasso described in Chapter 2) and

σ2
can also be used.

55

3.4. FlexCode

3.4 FlexCode

Be flexible, but stick to your

principles.

Eleanor Roosevelt

FlexCode (Izbicki and Lee, 2017) is an acronym for Flexible nonparametric

conditional density estimation via regression. It introduces a fully nonpara-

metric approach to conditional density estimation by reframing the problem

as an orthogonal series, where regression is utilized to estimate expansion

coefficients. This strategy enables efficient estimation of conditional densities

in high dimensions, leveraging the successes of high-dimensional regression.

For instance, in settings characterized by submanifold structures in the

feature space, FlexCode adjusts to the intrinsic dimensionality of the data

through the use of a carefully chosen regression method. Options include

nearest neighbors, local linear, tree-based, or spectral series regression (Bickel

and Li, 2007; Kpotufe and Dasgupta, 2012; Kpotufe, 2011; Lee and Izbicki,

2016). Similarly, when the number of relevant covariates (i.e., those influenc-

ing the distribution of Y) is small, FlexCode constructs effective conditional

density estimators using regression techniques such as lasso, SAM, Rodeo,

or other additive-based methods that perform variable selection (Lafferty and

Wasserman, 2008; Meier et al., 2009; Tibshirani, 1996; Yang and Tokdar, 2015).

The adaptability of FlexCode extends to handling different types of covari-

ates, including discrete data, mixed data types, functional data, circular data,

and more. These diverse data types often require specialized techniques

(Di Marzio et al., 2016). An R implementation of FlexCode can be found at

https://github.com/rizbicki/FlexCoDE, while a Python implementation can

be found at https://github.com/lee-group-cmu/FlexCode.

For simplicity, we assume that Y lies in the interval [0,1]. In cases where this

assumption does not hold, we can map Y to this specified interval. We start by

specifying an orthonormal basis (ϕi)i∈N in R. This basis will be used to model

the density f(y|x) as a function of y. As we shall see, each coefficient in the

expansion can be directly estimated via a regression. Note that there is a wide

range of (orthogonal) bases one can choose from to capture any challenging

shape of the density function of interest (Mallat, 1999). For example, when

56

https://github.com/rizbicki/FlexCoDE
https://github.com/lee-group-cmu/FlexCode

Chapter 3. Quantifying Aleatoric Uncertainty with Conditional Densities

dealing with reasonably smooth functions f(z|x), the Fourier basis is a natural

choice:

ϕ1(y) = 1; ϕ2i+1(y) =
√

2sin(2πiy), i ∈ N; ϕ2i(y) =
√

2cos(2πiy), i ∈ N

Alternatively, one can opt for wavelets or similar bases to effectively capture in-

homogeneities in the density. In cases where the response is discrete, indicator

functions may be a suitable choice (Izbicki and Lee, 2016, Sec. 4.2).

For fixed x ∈ Rd
and f(·|x)∈L2(R), we express f as a series using the basis

functions (ϕi)i ∈ N with coefficients βi(x):

f(y|x) =
∑
i∈N

βi(x)ϕi(y). (3.6)

Since the basis functions (ϕi)i ∈ N are orthogonal, the expansion coefficients

are determined by the inner product:

βi(x) = ⟨f(.|x),ϕi⟩=
∫
R

ϕi(y)f(y|x)dy = E [ϕi(Y)|x] . (3.7)

In other words, each βi(x) in Equation (3.6) is a regression function or con-

ditional expectation. This implies that, for a fixed i, we can estimate βi(x) by re-

gressing ϕi(y) on x using the transformed sample (X1,ϕi(Y1)), . . . ,(Xn,ϕi(Yn)).
The FlexCode estimator for f(y|x) is defined as follows:

f̂(y|x) :=
I∑

i=1
β̂i(x)ϕi(y), (3.8)

where the coefficients β̂i(x) are obtained through regression:

β̂i(x) = Ê [ϕi(Y)|x] ,

capturing how the density varies across the covariate space. The parameter I

determines the series expansion cutoff and plays a crucial role in balancing the

bias-variance tradeoff in the final density estimate. In general, a smaller value

of I results in a smoother density. The optimal value for the tuning parameter

I is determined through the validation set, utilizing the L2 loss function for

57

3.4. FlexCode

estimation.

Notice that each βi is fitted independently and does not depend on I . Thus,

the optimal value of I can be chosen in a fast manner; one does not need to

refit βi’s for each I .

3.4.1 Normalization and Spurious Bumps

The estimated densities are not guaranteed to be valid density functions. To

address this issue, FlexCode employs a renormalization procedure that adjusts

the output to eliminate negative values and ensure the resulting function

integrates to one, inspired by Efromovich (1999), Glad et al. (2003), and Hall

and Murison (1993).

The procedure begins by defining a truncated function,

fmax(y|x) = max{0, f̂(y|x)}.

If the integral

∫
fmax(y|x)dy satisfies

∫
fmax(y|x)dy ≥ 1, then f̂(y|x) is adjusted

to f̃(y|x) = max{0, f̂(y|x)− ξ}, where ξ is chosen such that

∫
f̃(y|x)dy = 1. If

the integral of fmax(y|x) is instead less than one, the function is rescaled as

f̃(y|x) = fmax(y|x)/
∫

fmax(y|x)dy.

To further refine the density estimate, FlexCode removes spurious bumps

that may result from the Fourier series representation. Specifically, it identifies

intervals [a,b] where

∫ b
a f̃(y|x)dy < δ and eliminates them by treating δ as a

tuning parameter. The optimal value of δ is selected to minimize the estimated

risk.

3.4.2 Variable Importance

If the regression method used to estimate βi provides variable importance

metrics, these metrics can be directly utilized by FlexCode. Specifically, let ui,j

denote a measure of importance of the j-th feature in estimating regression βi.

For instance, for random forests, ui,j may represent the mean decrease in the

Mean Squared Error (Breiman, 2001b); for sparse additive models , ui,j may be

value of the indicator function for the j-th summary statistic when estimating

βi(x) (Ravikumar et al., 2009). We define an importance measure for the j-th

58

Chapter 3. Quantifying Aleatoric Uncertainty with Conditional Densities

feature in estimating f(y|x) according to

uj := 1
I

I∑
i=1

ui,j . (3.9)

This importance measures adds interpretability to FlexCode.

3.4.3 Theory

This section shows bounds and rates for FlexCode (Eq. 3.8). We use the

notation f̂I(z|x) to indicate its dependence on the cutoff I . Proofs and further

details can be found in Izbicki and Lee (2017).

For every s > 1
2 and 0 < c <∞, let Wϕ(s,c) = {f =

∑
i≥1 θiϕi :

∑
i≥1 a2

i θ2
i ≤

c2}, where ai∼ (πi)s
, denote the Sobolev space. We assume that f belongs to

a set of functions which are not too “wiggly”:

Assumption 1 (Smoothness in y direction). ∀x∈X , f(y|x)∈Wϕ(sx, cx), where
f(y|x) is viewed as a function of y, and sx and cx are such that infx sx

def= β > 1
2 and∫

X c2
xdx def= C <∞.

We make the assumption that each function βi(x) is estimated using a

regression method with a convergence rate of O(n− 2α
2α+p). Here, α typically

represents a parameter associated with the smoothness of the βi(x) function,

while p denotes either the number of relevant covariates or the intrinsic di-

mension of x. To put it differently, we posit that each regression process is

capable of adapting to the sparse structure inherent in the data. This formal

assertion is explicitly presented as Assumption 2.

Assumption 2 (Regression convergence). For every i ∈ N, there exists some p ∈ N
and α > 0 such that

E
[∫ (

β̂i(x)−βi(x)
)2

dx
]

= O(n−2α/(2α+p))

Theorem 4. Under Assumptions 1 and 2, an upper bound on the risk of the CDE
from Equation 3.8 is

E
[" (

f̂I(y|x)− f(y|x)
)2

dydx
]
≤ IO

(
n−2α/(2α+p)

)
+ O(I−2β)

59

3.5. Mixture Models and Networks

Corollary 1. Under Assumptions 1 and 2, it is optimal to take I ≍ n
2α

(2α+p)(2β+1) ,

which yields the rate

O

(
n

− 2β

2β+p
2β+1

2α +1

)
for the FlexCode estimator.

In conclusion, the convergence rate of FlexCode solely depends on p, rep-

resenting the "true" dimension of the problem. Notably, the rate approaches

minimax efficiency concerning p. Indeed, in the isotropic scenario, where x
and y exhibit the same degree of smoothness (α = β), the rate is given by

O

(
n

− 2α

2α+p 2α+1
2α +1

)
,

which is close to the minimax rate O

(
n

− 2α
(2α+1+p)

)
of a conditional density

estimator with p covariates (Izbicki and Lee, 2016). The difference lies in

the multiplicative factor
2α+1

2α which approaches 1 as the function f becomes

smoother. While FlexCode’s rate is marginally slower than the optimal rate, the

estimator shows significantly greater speed of convergence compared to the

standard minimax rate,

O

(
n

− 2α
(2α+1+d)

)
,

typical for nonparametric conditional density estimators in Rd
. Thus, despite

the presence of d covariates, FlexCode mitigates the curse of dimensionality,

effectively behaving as if only p≪ d covariates were measured.

For a version of FlexCode for (dependent) time series data, see Grivol et al.

(2024).

3.5 Mixture Models and Networks

In the context of conditional density estimation, mixture models (Benaglia

et al., 2009; Quandt, 1958) assume that the conditional density f(y|x) can be

60

Chapter 3. Quantifying Aleatoric Uncertainty with Conditional Densities

written as a mixture of parametric densities,

f(y|x) =
m∑

i=1
αi(x)ϕ(y|θi(x)) , (3.10)

where αi(x)’s are nonnegative coefficients such that

∑m
i=1 αi(x) = 1 and ϕ is

the density of a predefined parametric distribution over y with parameters

θi(x). For instance, ϕ(y|θi(x)) can be the density of a gaussian distribution:

ϕ(y|θi(x)) = 1√
2πσ2

i (x)
exp

{
− (y−µi(x)2)

2σ2
i (x)

}
,

where θi(x) = (µi(x),σi(x)). One then models each parameter by imposing a

parametric relationship, such as

µi(x) =
(
β(i)

)t
x and σi(x) = exp

[(
γ (i)

)t
x
]

.

These parameters are typically fitted using the Expectation Maximization al-

gorithm (EM; Dempster et al. 1977).

x

µ1(x)

µ2(x)

σ1(x)

σ2(x)

α1(x)

α2(x)

Figure 3.2: Example of a Gaussian mixture density network structure with

input x, hidden layers, and outputs µ1(x), µ2(x), σ1(x), σ2(x), α1(x), and α2(x).
The outputs are combined according to Equation 3.10 to give the estimated

density.

Neural networks can also be used to parameterize mixture models. In

particular, mixture density networks represent the functions αi(x) and θi(x)

61

3.6. Normalizing Flows

using neural networks (Bishop, 1994). These networks take x as input and

output pairs (αi(x),θi(x))m
i=1, where m is a user-defined parameter that shapes

the output structure. For the output layers corresponding to αi(x), a softmax

function is typically applied to ensure these values lie on a probability simplex.

Figure 3.2 shows an example of an architecture for estimating a mixture of two

Gaussian distributions.

Rather than using the EM algorithm, this approach estimates network

parameters using standard neural network techniques, often employing the

cross-entropy loss function.

3.6 Normalizing Flows

I used to just live my life by going

with the flow.

Jin

In this section, we assume y ∈ Rm
, that is, the response can be multivariate.

Normalizing flows model f(y|x) by creating a bĳective transformation of y,

T x : Rm −→ Rm,

such that T x(Y)|x has density approximately p0(·)2
, where p0 is chosen a

priori. For instance, one may take p0 to be a Normal(0,Im).

A key reason why this idea is useful is that T x
can be easily used to

approximate f(y|x). Indeed, because T x
is bĳective and T x(Y)|x has density

approximately p0(·), it follows that

f (y|x)≈ p0 (T x(y)) |det JT x(y)| , (3.11)

where

JT x(y) =

∂T x

1
∂y1

. . .
∂T x

1
∂ym

...
. . .

...

∂T x
m

∂y1
. . .

∂T x
m

∂ym

2p0(·) may actually depend on x so that, p0(·|x)

62

Chapter 3. Quantifying Aleatoric Uncertainty with Conditional Densities

is the Jacobian matrix with all m×m partial derivatives of T x
with respect to

y. Thus, if a good T x
was known, the right-hand side of Equation 3.11 could

be used to approximate f(y|x) – all of its terms are known.

Another feature of normalizing flows is that it is easy to sample from

the estimated conditional density. Indeed, if Z ∼ p0(·), then by construction

(T x)−1 (Z) has approximately the same distribution as Y|x. Thus, one can

sample from the estimated conditional density by sampling from the base

distribution p0 and then applying the inverse of the transformation that was

learned.

In practice, to learn T x
, this function is parameterized using a neural net-

work with weights ϕ. This network takes x and y as inputs, and it outputs the

vector T ϕ,x(y). Given a training sample (X1,Y1), . . . ,(Xn,Yn), the weights

ϕ are typically trained by minimizing the cross-entropy loss of the implied

conditional density. That is, one searches for the weights ϕ that minimize

− 1
n

n∑
i=1

log
[
p0
(

T ϕ,xi(yi)
)∣∣

det JT ϕ,xi (yi)
∣∣]

There are several approaches to parameterize T x
using neural networks.

Modern methods focus on creating transformations that are both expressive,

increasing the likelihood of approximating well the true density, and compu-

tationally efficient, ensuring that the Jacobians in Equation 3.11 are calculated

with minimal cost. Typically, T x
is build using a composition of small building

blocks, that is, T x = SB ◦ . . . ◦ S2 ◦ S1, where we omit x from S’s to simplify

the notation. Each Sb is a bĳective transformation whose Jacobian is easy to

compute. This approach is useful because

(i) T x
is by construction bĳective and its inverse can be easily computed as

S−1
1 ◦S−1

2 ◦ . . .S−1
B , and

(ii) the determinant of its Jacobian can be computed using the chain rule:

det JT x(y) = det JSB
(SB−1 ◦ . . . ◦S2 ◦S1(y)) . . .det JS1(y).

Each S is parametrized using a neural network structure. In this way, the

full network will consist of the nested layers S1→ S2→ SB , as shown in Figure

63

3.7. The Ratio Trick

3.3 for a setting with no features x.

y

S1 S2

. . . T (y)

SB

Figure 3.3: Pictorial representation of a simplified normalizing flow structure

without features. The inputs are transformed through multiple stages of in-

vertible transformations, S1, S2, . . ., SB , leading to the output T (y). Note that

this illustration does not depict the exact transformations S.

An example of one of such building blocks Sb is the affine coupling layer

(Dinh et al., 2016), which splits its input u into two components, u1 and u2 and

is given by

S(u) = (u1,a(u1)⊙u2 + b(u1)).

Here, a and b are functions parametrized by the network: both take u1 as

input and pass it through the layers of a neural network with weights that

are estimated when training the normalizing flow. The symbol ⊙ represents

the Hadamard (element-wise) product. This transformation remains bĳective

even if a and b are not.

Several such building blocks have been designed, such as invertible 1× 1
convolutions, split priors (Dinh et al., 2016), masked autoregressive flows

(Papamakarios et al., 2017), and neural autoregressive flows (Huang et al.,

2018). See Papamakarios et al. (2021) for a comprehensive introduction to such

models. See also Wildberger et al. (2024) for continuous normalizing flows.

3.7 The Ratio Trick

The ratio trick has appeared in very different fields and with different goals

(e.g., Cheng and Chu 2004; Cranmer et al. 2015; Cranmer et al. 2020; Gutmann

et al. 2018; Qin 1998; Sugiyama et al. 2010b). Essentially, it converts the goal of

estimating a quantity (usually a ratio between two densities) into the problem

of estimating a classifier.

64

Chapter 3. Quantifying Aleatoric Uncertainty with Conditional Densities

Here, we explore a version of this trick based on Dalmasso et al. (2020a) and

Okuno and Polo (2021). In this context, the ratio tricks converts the problem

of estimating the conditional density of a continuous vector y given x into the

problem of estimating a probabilistic classifier.

Specifically, we start by generating a labeled sample T = {(X′
i,Y′

i,Si)}mi=1.

This dataset contains all original training samples (X1,Y1), . . . ,(Xn,Yn) (for

which Si = 1), and also additional artificial samples (X̃1,Ỹ1), . . . ,(X̃ñ,Ỹñ) (for

which Si = 0), where each pair (X̃,Ỹ) is drawn from X̃ ∼ U({X1, . . . ,Xn})3

and Ỹ|X̃ = x̃∼ g(y|X = x̃). Here, the conditional distribution g(y|x) is chosen

by the user.

Define the odds at (y;x) as

O(y;x) := P(S = 1|x,y)
P(S = 0|x,y) . (3.12)

By construction, it holds that

O(y;x) = f(x,y|S = 1)
f(x,y|S = 0) = f(y|x)

g(y|x) . (3.13)

Thus,

f(y|x) = g(y|x)O(y;x).

This suggests we estimate f by using the plugin estimate

f̂(y|x) := g(y|x) P̂(S = 1|x,y)
P̂(S = 0|x,y)

, (3.14)

where P̂(S = 1|x,y) is obtained using any probabilistic classifier (such as those

discussed in Chapter 2).

3.8 Other Conditional Density Estimators

In low-dimensional feature spaces, many conditional density estimators

rely on the initial estimation of f(y,x) and f(x). A common practice involves

3
One can also sample from the marginal distribution of x, f(x) if this is an option. This is the

case on the LFI problem studied in Chapter 9.

65

3.8. Other Conditional Density Estimators

using kernel density estimators, as pioneered by Rosenblatt (1969). The sub-

sequent combination of these estimates is expressed by f(y|x) = f(y,x)
f(x) , often

implemented through

f̂(y|x) =
∑n

i=1 Khx(∥x−Xi∥)Khy (y−Yi)∑n
i=1 Khx(∥x−Xi∥)

,

where Kh(t) = h−dK(t/h) denotes a kernel with bandwidth h in d dimensions.

Several advancements have been made to enhance this approach. Notable

works, such as those by Hyndman et al. (1996) and Ichimura and Fukuda

(2010), introduce different criteria and shortcuts for parameter tuning, along

with efficient implementations of these methods.

Alternative techniques for low-dimensional settings include locally poly-

nomial regression (Fan et al., 1996), least squares approaches (Sugiyama et al.,

2010a), and density estimation through quantile estimation (Takeuchi et al.,

2009). Further exploration of these methods and others is available in the

comprehensive review by Bertin et al. (2016).

Hall et al. (2004) presents a method for parameter tuning in kernel density

estimators that automatically identifies relevant components of x for f(y|x).
Similarly, Shiga et al. (Shiga et al., 2015) propose a conditional estimator that

selects relevant components, assuming an additive structure in f(y|x).
Efromovich (2010) introduces an orthogonal series estimator, offering au-

tomatic dimension reduction on x when certain components are conditionally

independent of the response. For high-dimensional feature spaces, Izbicki and

Lee (2016) propose a spectral basis-based orthogonal series approach, while

Inácio and Izbicki (2018) and Dalmasso et al. (2020b) present a version of

FlexCode where βi(x) is estimated using neural networks.

Other neural network-based approaches have also gained prominence for

conditional density estimation. Examples include conditional generative ad-

versarial networks (cGANs; Mirza and Osindero 2014), conditional varia-

tional autoencoders (cVAEs; Sohn et al. 2015), diffusion models (Dhariwal and

Nichol, 2021; Ho and Salimans, 2022; Ho et al., 2020; Nichol and Dhariwal,

2021; Sohl-Dickstein et al., 2015), and transformer-based generative models

(Radford et al., 2019; Vaswani et al., 2017).

Additionally, some methods estimate the conditional cumulative distribu-

66

Chapter 3. Quantifying Aleatoric Uncertainty with Conditional Densities

tion F (y|x) directly, bypassing density estimation altogether (Kostic et al., 2024;

Li and Racine, 2008).

3.9 Quantile Regression

Quantile regression aims to estimate one property of the distribution of

Y |x: its conditional quantiles. Formally, the α-conditional quantile of Y at x,

qα(x), is the function such that P(Y ≤ qα(x)|X = x) = α (we assume here that

the distribution of Y |x is strictly continuous); see Figure 3.4 for an illustration.

In other words, qα(x) = F −1(α|x), where F is the cumulative distribution of

Y conditional on x. Note that q1/2(x) is the conditional median.

Figure 3.4: Illustration of the α-quantile. The shaded area represents the region

where the cumulative probability equals α, with the quantile qα(x) indicated

by a vertical dashed line.

3.9.1 Pinball Loss

To assess the accuracy of an estimate of qα(x), we will use the loss function

called the pinball loss. Let g : X −→ R be an estimate of qα(x). The pinball loss

of g evaluated at (x,y) is defined as

Lα(g,x,y) = (g(x)− y)(I(y ≤ g(x))−α). (3.15)

67

3.9. Quantile Regression

The risk derived from this loss function is minimized precisely by the

solution g(x) = qα(x):

argmin
g

E [Lα(g,X,Y)] = qα(x).

This indicates that this loss function is suitable for evaluating estimates of

qα(x).
Figure 3.5 illustrates the behavior of this loss function as a function of g(x)

for α = 10%. According to it, underestimating y is less bad than overestimating

this quantity.

Figure 3.5: Pinball loss for α = 10%.

See Chung et al. (2021) and Feldman et al. (2021) for other loss functions

that can be used for quantile regression that also encourage calibration.

3.9.1.1 Estimation the Quantile Function

In this section, we briefly describe a few ways to estimate the quantile

regression.

• [Parametric Methods] One way to estimate qα(x) is to assume that it

depends linearly on the covariates. In other words, we can assume that

qα(x) = βtx.

68

Chapter 3. Quantifying Aleatoric Uncertainty with Conditional Densities

We can then search for

arg min
β∈Rd

1
n

n∑
i=1

Lα(gβ ,xi,yi),

where gβ(x) := βtx (Koenker and Bassett Jr, 1978).

• [KNN] The idea of the k-nearest neighbors (KNN) method for estimating

qα(x) is to use the responses Y of the k-nearest neighbors to x (Ma et al.,

2016). Formally, we define

g(x) = q̂α ({yi}i∈Nx) , (3.16)

where q̂α(S) is the α-quantile of S and Nx is the set of the k nearest

observations to x, i.e.,

Nx =
{

i ∈ {1, . . . ,n} : d(xi,x)≤ dk
x

}
and dk

x is the distance from x to the k-th nearest neighbor of x.

The tuning parameter k can be chosen through cross-validation using

the pinball loss as the metric to be optimized.

• [Random Forests] Meinshausen and Ridgeway (2006) proposes estimat-

ing quantiles from an estimate of the conditional cumulative distribution.

This estimate is a local version of the estimate given by the empirical cu-

mulative distribution function:

F̂ (y|x) =
n∑

i=1
wi(x)I(yi ≤ y),

where wi(x) is a measure of similarity between x and the i-th observation

in the training set obtained through a random forest. Specifically, it is

defined as follows: let Rb
x be the leaf where the observation x falls in the

b-th tree, and define the weight associated with that tree as

wi(x;b) = I(xi ∈Rb
x)∑n

j=1 I(xj ∈Rb
x)

.

69

3.9. Quantile Regression

In other words, wi(x;b) is the proportion of observations in the training

set that fall in the same leaf as x. The combined weight is then given by

the average of these weights:

wi(x) = 1
B

B∑
b=1

wi(x;b).

This method has several advantages over KNN. For example, random

forests automatically perform variable selection, so the quantile estimates

inherit this property and are therefore more robust in scenarios with

many irrelevant variables. Additionally, random forests automatically

take into account interactions and non-linearities of the covariates.

• [Neural Networks] A neural network can be trivially used to estimate

quantile regression. To do this, simply use the pinball loss as the loss

function of a network with a single output.

Figure 3.6 displays the 10th and 90th quantiles estimated by boosting, linear,

and random forest quantile regression models for predicting life expectancy

based on GDP per capita using the data described in Section 1.1. The code to

generate this figure is available at the Quantile Regression Notebook.

Figure 3.6: Comparison between boosting, linear, and random forest quantile

regression models for Predicting Life Expectancy based on GDP per Capita,

using 10th and 90th percentiles.

70

https://github.com/rizbicki/UQ4ML/blob/main/notebooks/Quantile_Regression_Notebook.md

Chapter 3. Quantifying Aleatoric Uncertainty with Conditional Densities

3.10 Simulated Example: Gaussian Distribution

Here, we compare various methods for CDE on a toy example which in-

volves the creation of a multivariate dataset, where the conditional relationship

between features and target variables is known. The data is generated accord-

ing to:

X∼ U(0,1)d,

with d = 50, and

Y |x∼N(x1,1).

y
0.00

0.25

0.50

f(y
|x

)

y
0.0

0.5

f(y
|x

)

y
0.0

0.5

1.0

f(y
|x

)

y
0.0

0.5

f(y
|x

)

5.0 2.5 0.0 2.5 5.0
y

0.0

0.5

f(y
|x

)

5.0 2.5 0.0 2.5 5.0
y

0.0

0.5

f(y
|x

)
Gaussian Mixture
FlexCode

NFlow True Density

Figure 3.7: Comparison of estimated conditional density functions using Flex-

Code with random forest-based β estimates, Gaussian mixture density net-

works, and normalizing flows on a simulated Gaussian dataset. The true

conditional density Y |x∼N(x1,1) is shown for reference.

We compare FlexCode, where the β coefficients are estimated using ran-

dom forests (Section 3.4), against a Gaussian mixture density network (Section

3.5) and normalizing flows (Section 3.6). The detailed implementation and

code are available in the CDE Notebook. Figure 3.7 illustrates the estimated

71

https://github.com/rizbicki/UQ4ML/blob/main/notebooks/CDE_Notebook.ipynb

3.11. Example: Twitter Location Prediction

conditional densities at six test points. FlexCode consistently demonstrates

superior performance over the other methods, as further supported by the L2

loss values shown in Table 3.1.

Table 3.1: Estimated L2 losses (with standard errors) for different CDE meth-

ods on a simulated Gaussian dataset. FlexCode, with random forest-based β
estimates, outperforms the Gaussian mixture density network and normaliz-

ing flows.

Method L2 Loss (s.e.)

Gaussian Mixture 0.116 (0.012)

FlexCode -0.266 (0.002)

NFlow 0.143 (0.008)

3.11 Example: Twitter Location Prediction

We leverage FlexCode to predict the geographical origin of tweets based on

their content. By utilizing samples with known locations, we train our model

to estimate the full conditional distribution of latitude and longitude f(y|x),
where x represents covariates extracted from tweets and y = (y1,y2) denotes

the latitude/longitude pair.

Our dataset comprises approximately 8,000 tweets from the USA in July

2015 containing the keyword "beach". We extract 500 covariates using a bag-

of-words method, focusing on the most frequent unigrams and bigrams (Man-

ning, 2009). Given our anticipation that only a subset of the 500 covariates is

pertinent to tweet location, we implement FlexCode through sparse additive

models (Ravikumar et al., 2009). As the response is bivariate, we employ a

tensor product of Fourier basis functions.

In Figure 3.8, two instances of estimated densities are illustrated. FlexCode

successfully determines tweet locations even in ambiguous scenarios, such as

the presence of Long Beach in both California and Connecticut (as depicted in

the bottom right plot of Figure 3.8).

Notably, FlexCode-SAM, based on sparse additive models, allows us to

identify the most relevant covariates for location prediction. In Figure 3.8

(left), the terms "beachin", "boardwalk", and "daytona" are present in at least

72

Chapter 3. Quantifying Aleatoric Uncertainty with Conditional Densities

●●●●

0

20

40

60

−150 −125 −100 −75 −50
lon

la
t

0.0005

0.0010

0.0015

0.0020
level

●●●●

0

20

40

60

−150 −125 −100 −75 −50
lon

la
t

0.00025

0.00050

0.00075

0.00100

level

Figure 3.8: Top: Two tweets with the keyword “beach”. Bottom: Level sets of

the estimated probability density of the tweet locations given the content of

the tweets. The black dots indicate their true locations.

33% of the estimated regression functions. Conversely, for the example on the

right, relevant covariates include "long beach", "island", "long", and "haven".

3.12 Summary

In this chapter, we introduced three metrics to compare the performance

of estimators f̂ of the conditional density f : the L2 loss, the cross-entropy

loss, and CRPS. All loss functions are proper and can be easily estimated if

an i.i.d. test dataset is available. We then covered how, in classification, f is

estimated using probabilistic classifiers tuned with an appropriate loss func-

tion. In particular, we saw that accuracy, F1-score and related metrics are

not appropriate for tuning probabilistic classifiers. We also explored several

approaches to estimate this conditional density in a regression context, rang-

ing from methods that leverage existing regression methods and probabilistic

73

3.12. Summary

classifiers (FlexCode and the Ratio trick) to methods that use modern neural

network architectures (such as normalizing flows). Finally, we saw that spe-

cific quantiles of distribution Y |x maybe be directly estimated using quantile

regression.

74

Chapter 4

Diagnostics and Recalibration

The Anatomy Lesson of Dr. Nicolaes Tulp. Rembrandt, 1632, Mauritshuis,

The Hague.

4.1. PIT Values: Evaluating Calibration in Regression

A correct diagnosis is

three-fourths of the remedy.

Mahatma Gandhi

In Chapter 3, we covered various conditional density estimators and dis-

cussed different loss functions to help choose the best fit for a given dataset.

However, these loss functions have limitations – they don’t tell us if the best

estimate we found, say f̂ , is actually good enough. They also don’t provide

guidance on how to improve f̂ or which specific data points (x’s) need atten-

tion.

This chapter aims to address these practical questions that are crucial for

trusting uncertainty quantification based on f̂ . We will focus on evaluating the

overall quality of the estimate, figuring out how to enhance it, and identifying

specific areas in the dataset that require improvement.

Secions 4.1 and 4.2 deal with regression problems, while Section 4.3 dis-

cusses usual techniques for classification calibration.

4.1 PIT Values: Evaluating Calibration in Regres-
sion

The standard way to address the question of whether f̂ is reasonable is to

test the global consistency hypothesis:

Definition 2 (Global Consistency). An estimate f̂(y|x) is globally consistent with
the density f(y|x) if the following null hypothesis holds:

H0 : f̂(y|x) = f(y|x) for almost every x ∈ X and y ∈ R. (4.1)

This means that, under global consistency, the estimated conditional den-

sity f̂(y|x) accurately represents the true underlying density f(y|x) across the

entire feature space X and output space R. Notice that, in this hypothesis, we

consider f̂ is a particular fixed conditional density estimate, that is, there is no

randomness associated to it.

In a regression setting, one way of testing H0 is by computing PIT values:

76

Chapter 4. Diagnostics and Recalibration

Definition 3 (PIT). Fix x ∈ X and y ∈ R. The probability integral transform of y at
x, as modeled by the conditional density estimate f̂(y|x), is

PIT(y;x) :=
∫ y

−∞
f̂(y′|x)dy′ =: F̂ (y|x). (4.2)

The PIT value therefore represents the cumulative probability, according

to the estimated density f̂ , of observing a value less than or equal to y given

the input x. See Figure 4.1 for an illustration.

For implicit models of f̂(y|x) – generative models capable of sampling from

f̂ but not evaluating it directly – the PIT values can be approximated through

forward simulation. For a fixed x ∈ X and y ∈ Y , simulate Y1, . . . ,YL ∼ f̂(·|x).
Then, approximate PIT(y;x) using the cumulative average

PIT(y;x)≈ 1
L

L∑
i=1

I(Yi ≤ y).

Figure 4.1: Illustration of the PIT values for two distributions, f̂(y|x1) and

f̂(y|x2). The vertical dashed lines represent the true observed values y = y1
and y = y2, respectively, for each distribution. The highlighted areas indicate

the regions of interest under the curves for the PIT values.

If the conditional density model f̂(y|x) is globally consistent with the true

density f(y|x), then the PIT values should be uniformly distributed over the

interval [0,1]. Specifically, if the null hypothesis H0 (Equation 4.1) holds true,

77

4.1. PIT Values: Evaluating Calibration in Regression

the random variables PIT(Y1;X1), . . . ,PIT(Yn;Xn) will be independent and

identically distributed as Unif(0,1). Here, (X1,Y1), . . . ,(Xn,Yn) represent a

holdout set that was not used in the training of f̂ . This result follows from a

fundamental property in probability theory: when you apply the cumulative

distribution function of a random variable to the variable itself, the outcome

is uniformly distributed on the interval [0,1]. Therefore, if f̂(y|x) correctly

models the true conditional density, the PIT values will reflect this uniformity.

This suggests that H0 maybe be evaluated by checking if the PIT values

are uniformly distributed. Indeed, the uniformity of PIT values is a widely

used criterion for assessing the goodness-of-fit of unconditional (Dawid, 1984;

Diebold et al., 1998; Gneiting and Katzfuss, 2014) and conditional density

models in practice (Bordoloi et al., 2010; Cook et al., 2006; Tanaka et al., 2018).

For example, practitioners often plot a histogram of the PIT values to visually

inspect deviations from uniformity. Additionally, formal hypothesis tests, such

as the Kolmogorov–Smirnov test, can be employed to evaluate whether the PIT

values follow a uniform distribution statistically.

While these methods provide valuable insights, an estimate f̂ might pass

the uniformity test even if it is not a good model. The following theorem

illustrates this limitation:

Theorem 5 (Insensitivity to Covariate Transformations; Zhao et al. (2021)).
Suppose there exists a function g : X −→Z , where Z ⊆ Rk for some k, that satisfies

f̂(y|x) = f(y|g(x)). (4.3)

Let (X,Y)∼ FX,Y . Then PIT(Y ;X)∼Unif(0,1).

Many models naturally lead to estimates that could satisfy the condition

in Equation 4.3, even without being globally consistent. In fact, clearly mis-

specified models f̂ can yield uniform PIT values and “pass” an associated

goodness-of-fit test regardless of the sample size. To illustrate, consider a sce-

nario where f̂(y|x) is derived from a linear model. In this case, f̂(y|x) will

depend on x ∈ Rd
solely through g(x) := βT x, where β ∈ Rd

. Consequently, it

is possible to have f̂(y|x) = f(y|g(x)) even when f̂(y|x) substantially deviates

from the true distribution f(y|x).
As another example, consider a conditional density estimator incorporating

78

Chapter 4. Diagnostics and Recalibration

variable selection techniques (Dalmasso et al., 2020b; Izbicki and Lee, 2017;

Shiga et al., 2015). Such an estimator could satisfy f̂(y|x) = f(y|g(x)) with

g(x) := (x)S , where S ⊂ 1, . . . ,d denotes a subset of covariates. Thus, a test

of the overall uniformity of PIT values is no guarantee that we are correctly

modeling the relationship between y and the predictors x.

A test that overcomes this issue is given by Zhao et al. (2021) and described

in Section 4.2. Before that, we discuss a formal calibration notion for CDE

models that also involves the PIT values.

4.1.1 Probabilistic Calibration and Recalibration

There are several notions of calibration in CDE models for regression

(Gneiting et al., 2007). Here we focus on probabilistic calibration, which es-

sentially means that PIT values should be uniform.

Definition 4 (Probabilistic and Quantile Calibration; Dawid (1984) and
Gneiting et al. (2007)). An estimator f̂(y|x) is said to be probabilistically cal-

ibrated if, for every α ∈ [0,1],

P(PIT(Y ;X)≤ α) = α,

where PIT(Y ;X) = F̂ (Y |x) is its probability integral transform, as defined in Defi-
nition 3. This is equivalent to saying that

P
(

Y ≤ F̂ −1(α|X)
)

= α,

which is often referred to as quantile calibration.

In simple terms, if a model is probabilistically calibrated, then, for exam-

ple, 10% of the observed Y values should fall below the 10th percentile of

the estimated conditional distribution, 50% should fall below the 50th per-

centile, and so forth. More generally, (1− α)% of the prediction intervals,

[F̂ −1(α/2|x), F̂ −1(1−α/2|x)], should contain the true Y values. (For a formal

definition of marginal coverage and prediction sets, see Chapter 5.)

Probabilistic classification can be evaluated by analyzing the sample distri-

bution of PIT values through histograms or P-P plots, as illustrated in Figure

4.2.

79

4.1. PIT Values: Evaluating Calibration in Regression

As discussed in Gneiting and Resin (2023) and in Theorem 5, probabilistic

calibration primarily focuses on unconditional properties of the estimated den-

sities. However, one can still attempt to improve the estimate f̂ by recalibrating

it to move closer to probabilistic calibration.

Recalibration. One recalibration method is quantile recalibration (Bor-

doloi et al., 2010; Kuleshov et al., 2018). This method adjusts the estimated

cumulative distribution function to correct deviations from uniformity in the

PIT values. Formally, let

G(α) = P(PIT(Y ;X)≤ α)

be the marginal cumulative distribution function of the PIT values, and let Ĝ

represent an estimate of G. This estimate can be derived, for instance, from

the empirical CDF of the PIT values on a holdout set or by applying a kernel

density estimator to that set. Once Ĝ is obtained, the recalibrated CDF, denoted

as F̃ , is computed by transforming the original CDF F̂ using Ĝ as follows:

F̃ (y|x) := Ĝ
(

F̂ (y|x)
)

.

By construction, if Ĝ = G, then F̃ is probabilistically calibrated. Indeed, for

every α ∈ [0,1], the recalibrated model satisfies:

P
(

F̃ (Y |X)≤ α
)

= P
(

Ĝ
(

F̂ (Y |X)
)
≤ α

)
= P

(
F̂ (Y |X)≤ Ĝ−1(α)

)
= P

(
F̂ (Y |X)≤G−1(α)

)
= G

(
G−1(α)

)
= α.

See Dheur and Taieb (2023), Dheur and Taieb (2024) and references therein

for variations of these recalibration ideas, as well as other approaches to recal-

ibrate CDEs. This recalibration techniques however focus on marginal aspects

of the PIT distribution and do not address potential covariate dependencies.

4.1.2 Simulated Example: Gaussian Distribution Revisited

Figure 4.2 displays the histograms of the PIT for the three models discussed

in Section 3.10. The code for this implementation is available in the CDE

Notebook. Under proper model calibration, these histograms should follow a

80

https://github.com/rizbicki/UQ4ML/blob/main/notebooks/CDE_Notebook.ipynb
https://github.com/rizbicki/UQ4ML/blob/main/notebooks/CDE_Notebook.ipynb

Chapter 4. Diagnostics and Recalibration

0.0 0.2 0.4 0.6 0.8 1.0
PIT Value

0

200

400

600

800

1000

Fr
eq

ue
nc

y
Gaussian Mixture

0.0 0.2 0.4 0.6 0.8 1.0
PIT Value

0

25

50

75

100

125

150

Fr
eq

ue
nc

y

FlexCode

0.0 0.2 0.4 0.6 0.8 1.0
PIT Value

0

200

400

600

800

1000

1200

1400

Fr
eq

ue
nc

y

NFlow
Uniform Average

Figure 4.2: PIT histograms for the Gaussian Mixture, FlexCode, and NFlow

models. Each panel shows the distribution of PIT values, with the red line

representing the expected uniform distribution under proper calibration. The

shaded region shows 95% confidence interval for the bar heights under the

global consistency hypothesis.

uniform distribution, represented by the red line in each panel. The shaded

region indicates the 95% confidence interval for the bar heights, assuming a

uniform distribution. The plot suggests that although none of the models are

fully calibrated, FlexCode demonstrates a better alignment with calibration.

4.2 Conditional PIT values

The primary objective of conditional PIT values is to overcome the limita-

tions highlighted in Theorem 5 (Zhao et al., 2021). This approach is based on

the following key result:

Theorem 6 (Local Consistency and Pointwise Uniformity). Global consistency
is achieved if and only if the distribution of PIT(Y ;x), given x, is uniform over (0,1).

Building on this result, Zhao et al. (2021) suggests testing H0 by evaluating

whether PIT(Y ;x), conditional on x, follows a uniform distribution over (0,1).
This testing problem is then reformulated as follows. For each γ ∈ (0,1), define

the cumulative distribution function of the PIT at x as

rf̂ (x;γ) := P(PIT(Y ;x) < γ|x) . (4.4)

Since rf̂ (x;γ) represents the conditional cumulative distribution function of

81

4.2. Conditional PIT values

the PIT at x, it follows that for each fixed x,

f̂(y|x) = f(y|x) for almost every y ∈ Y if, and only if,

rf̂ (x;γ) = γ for every γ ∈ (0,1).

In other words, global consistency holds if, and only if, rf̂ (x;γ) = γ for every

γ ∈ (0,1). This insight suggests that we can test H0 by estimating rf̂ (x;γ) and

assessing its deviation from γ.

To estimate rf̂
, note that this quantity can be interpreted as the regression

of the indicator variable

W γ := I(PIT(Y ;X) < γ)

on X. Therefore, rf̂ (x;γ) can be estimated by calculating W γ
i := I(PIT(Yi;Xi) <

γ) and performing a regression of W on X using the transformed dataset

{(X1,W γ
1), . . . ,(Xn,W γ

n)}.

Once rf̂
is estimated (for simplicity, we denote its estimate by r̂(x;γ)), we

can test H0 using the test statistic

S := 1
n

n∑
i=1

T (Xi), (4.5)

where

T (x) := 1
|G|

∑
α∈G

(r̂(x;α)−α)2
(4.6)

quantifies the deviation of f̂(y|x) from f(y|x) at each point x.

The distribution of T under the null hypothesis can be approximated using

Monte Carlo sampling, leveraging the fact that under H0, W ∼ U(0,1). Each

Monte Carlo sample consists of (X1,W b
1), . . . ,(XB ,W b

B), with W b
i ∼ U(0,1).

The resulting test is referred to as the Global Consistency Test (GCT).

T (x) can also be used as a test statistic to test local consistency at x, which is

defined as follows:

Definition 5 (Local Consistency). Fix x ∈ X . An estimate f̂(y|x) is locally

82

Chapter 4. Diagnostics and Recalibration

consistent with the density f(y|x) at fixed x if the following null hypothesis holds:

H0(x) : f̂(y|x) = f(y|x) for every y ∈ R. (4.7)

Local consistency therefore means that, at the specific point x, the esti-

mated conditional density f̂(y|x) perfectly matches the true conditional den-

sity f(y|x) for all possible values of y. In other words, the estimation is accurate

at this particular location in the feature space.

The local null hypothesis H0(x) can be tested by using the test statistic T (x)
and Monte Carlo sampling to determine (an approximate) null distribution.

We denote such test by Local Consistency Test (LCT).

Under certain conditions, LCT approximately controls the Type I error rate.

Specifically, we require that the regression estimator used to construct r̂ is local

in the following sense:

Assumption 3 (Local Regression Estimator). There exists ϵ > 0 such that the
estimated regression at x, denoted by r̂(x,γ), only utilizes the sample points (Xi,Yi)
for which Xi lies within the ball B(x;ϵ), a neighborhood around x with radius ϵ.

This assumption ensures that the regression estimate r̂(x,γ) at a point x
is influenced solely by the data points in the vicinity of x, thus making the

estimation highly localized.

Given this assumption, we can state the following theorem:

Theorem 7. Fix ϵ ∈ R. Under the null hypothesis

Hϵ
0(x) : f̂(y|x) = f(y|x) for almost every y ∈ Y and for all x′ ∈ B(x;ϵ),

and under Assumption 3, for any significance level 0 < α < 1,

lim
B−→∞

P(p(x)≤ α) = α,

where p(x) is the Monte Carlo p-value computed using T (x) as the test statistic.

This theorem indicates that when the regression estimator is local, the LCT

will control the Type I error rate at the specified level α asymptotically. In

other words, the probability of incorrectly rejecting the null hypothesis Hϵ
0(x)

(which asserts that the estimated conditional density f̂(y|x) is consistent with

83

4.2. Conditional PIT values

the true density f(y|x) within the neighborhood B(x;ϵ)) will approach α as

the number of Monte Carlo samples B increases indefinitely.

4.2.1 Diagnostics

Conditional PIT values offer valuable insights into the nature of deviations

between the estimated conditional density f̂ and the true conditional density

f at any given location x. One effective way to analyze these deviations

is through the use of “amortized local P-P plots” (ALPs), which plot r̂α(x)
against α.

P-P plots (Probability-Probability plots) traditionally serve as a diagnostic

tool to compare the empirical CDF of a sample with a theoretical CDF (Gibbons

and Chakraborti, 2014), helping to assess how well the model aligns with the

expected distribution. In the context of ALPs, these plots allow us to visu-

alize the agreement between the estimated conditional CDF and the uniform

distribution, which is expected under the true model. The alignment, or lack

thereof, reveals where and how the model’s performance may deviate from

the true conditional density, providing detailed interpretive information about

potential modes of deviation.

Figure 4.3 illustrates how these ALPs can highlight such deviations effec-

tively. Importantly, these plots can be constructed without requiring knowl-

edge of the true conditional density f(y|x), making them a powerful tool for

model diagnostics and interpretation.

4.2.2 Monotonic Neural Networks to Estimate the Regression
Function

Dey et al. (2022) estimate rf̂ (γ;x) by improving upon Zhao et al., 2021.

The key idea is to first augment the calibration data (X1,Y1), . . . ,(Xn,Yn) by

drawing multiple values γi,1, . . . ,γi,K ∼ U(0,1) for each data point (i = 1, . . . ,n),

and then regress the random variable

Wi,j := I(PIT(Yi;Xi)≤ γi,j)

84

Chapter 4. Diagnostics and Recalibration

2 0 2
y

0.0

0.1

0.2

0.3

0.4

De
ns

ity
Positive Bias

f(y|x)
f(y|x)

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

r(x
;

)

Positive Bias

2 0 2
y

0.0

0.1

0.2

0.3

0.4

De
ns

ity

Overdispersion

f(y|x)
f(y|x)

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

r(x
;

)

Overdispersion

2 0 2
y

0.0

0.1

0.2

0.3

0.4

De
ns

ity

Negative Bias

f(y|x)
f(y|x)

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

r(x
;

)
Negative Bias

2 0 2
y

0.0

0.2

0.4

0.6

0.8

De
ns

ity

Underdispersion
f(y|x)
f(y|x)

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

r(x
;

)

Underdispersion

Figure 4.3: P-P plots assess the fit between a density model and actual data,

revealing bias (left panel) and dispersion (right panel). “Amortized Local P-P

Plots" (ALPs) compare conditional densities f̂(y|x) at any location x in the

feature space X .

on both Xi and γi,j using the augmented calibration sample {(Xi,γi,j ,Wi,j)}i,j ,

for i = 1, . . . ,n and j = 1, . . . ,K. As rf̂ (γ;x) is a non-decreasing function of

γ, Dey et al. (2022) use monotonic neural networks (Wehenkel and Louppe,

2019) for most applications with complex inputs, though any other suitable

regression method may be used.

4.2.3 Handling Multivariate Responses

When the response Y is multivariate, the random variable FY|X(Y|X)
is no longer uniformly distributed (Genest and Rivest, 2001), making a di-

rect generalization of PIT values to higher dimensions nontrivial. To address

this, one approach is to evaluate the PIT statistic for univariate projections

of Y (Mucesh et al., 2021). Specifically, PIT values can be computed using

the estimate f̂(h(Y)|x) induced by f̂(Y|x), for a chosen projection function

h : Rp → R. The choice of h depends on the context. For instance, one could

consider individual components, h(y) = yj , or use copPIT (Ziegel, Gneiting,

et al., 2014), which creates a unidimensional projection encapsulating infor-

mation about the joint distribution of Y. While PIT and conditional PIT

85

4.2. Conditional PIT values

diagnostics on these projections cannot fully assess the fit to f(Y|x), they offer

valuable insights and serve as useful goodness-of-fit checks.

An alternative diagnostic for f̂ is the highest predictive density (HPD)

values (Dalmasso et al., 2020b; Harrison et al., 2015), defined as

HPD(y;x) =
∫

{y′:f̂(y′|x)≥f̂(y|x)}
f̂(y′|x)dy′;

see Figure 4.4 for an illustration. This measure reflects the plausibility of y
under f̂(y|x), with smaller values indicating higher plausibility. In Bayesian

contexts, where y = θ represents the parameter of interest, HPD values cor-

respond to the complement of the e-value (Pereira and Stern, 1999). Like PIT

values, HPD values are uniformly distributed under the global null hypoth-

esis (Dalmasso et al., 2020b). However, standard goodness-of-fit tests based

on HPD values, similar to those based on PIT, are insensitive to covariate

transformations.

Figure 4.4: Illustration of the HPD value for a distribution, f̂(y|x) The vertical

dashed lines represent the true observed values y = y1. The highlighted areas

indicate the regions of interest under the curves for the HPD value.

Fortunately, HPD values exhibit uniformity under the local consistency

hypothesis:

Theorem 8 (Zhao et al., 2021). For any x ∈ X , if the local null hypothesis H0(x) :
f̂(·|x) = f(·|x) holds, then the distribution of HPD(Y ;x) given x is uniform over

86

Chapter 4. Diagnostics and Recalibration

(0,1).

This property enables the application of techniques from Section 4.2 to

HPD values for assessing both global and local consistency in multivariate

responses, including the construction of local P-P plots (Zhao et al., 2021).

The HPD statistic is particularly useful for constructing predictive regions

with f̂ , as HPD values are intrinsically linked to highest predictive density sets

(Example 5.1). Specifically, for the α-level HPD set Rα(x):

HPD(y;x) < α ⇐⇒ Y ∈Rα(x).

Testing the local consistency of f̂ via HPD values thus directly evaluates the

coverage of HPD sets. Moreover, HPD values are used the HPD-split conformal

method (Section 5.3).

4.2.4 Example: Neural Density Inference for Galaxy Images

In this toy example, x ∈ R400
represents an image of an elliptical galaxy

generated by GalSim, an open-source toolkit for simulating realistic images of

astronomical objects (Rowe et al., 2015). Our response variable is y, the galaxy’s

rotation angle with respect to the x-axis. For illustration, our data is simulated

as a mixture of a larger population with λ = 0.7 (spheroidal galaxies), and

a smaller population with λ = 0.1 (elongated galaxies). We then simulate a

sample of images as follows: first, we draw λ and y from a prior distribution

given by

P(λ = 0.7) = 1−P(λ = 0.1) = 0.9

Y ∼ Unif(−π,π)

Then we sample 20×20 galaxy images X according to the data model X|λ,y ∼
GalSim(a,λ), where

a|λ = 0.7∼N(y,0.05)

a|λ = 0.1∼ 0.5Laplace(y,0.05) + 0.5Laplace(y,0.0005).

Finally, we fit a convolutional mixture density network (ConvMDN; see

87

4.2. Conditional PIT values

Section 3.5), which gives us an estimate of f(y|x). We allow K, the number of

mixture components, to vary. According to the KL divergence loss computed

on a separate test sample with 1000 images, the best fit of f(θ|x) is achieved by

a ConvMDN model with K = 7.

Figure 4.5: Diagnostics for conditional density estimation: Visualization of

test galaxy points in R400
using the first two components (center panel, "PCA

map with LCT p-values"). ConvMDN’s P-values indicate good fit for 90%

of spheroidal galaxies (λ = 0.7) but poor fit for the 10% elongated galaxies

(λ = 0.1). Local P-P plots reveal significant deviations in CDEs for the latter

group, highlighting the need for improved density approximations.

Here, the ConvMDN model with the smallest KL loss fails the global test

that uses the statistic in Equation 4.5 (p < 0.001), so we turn to the diagnostics

described in Section 4 to understand why. Figure 4.5 plots the test galaxy

images along their first two principal components. The local tests of Equation

4.6 show that the ConvMDN model generally fits the density well for the main

population of spheroidal galaxies (λ = 0.7), but fails to properly model the

smaller population of elongated galaxies (λ = 0.1). P-P plots at selected test

points indicate severe bias in the density estimates for the λ = 0.1 population.

These plots suggest that an effective way of obtaining a better approximation

of the density is by improving the fit for the λ = 0.1 population (by obtaining

88

Chapter 4. Diagnostics and Recalibration

more data in that region of the feature space, using a different model class,

etc). For instance, CDE models not based on mixtures could be more effective.

4.3 Calibration of Classification Models

Even though proper loss functions encourage P(Y = y|x) to be well esti-

mated, this is not always achieved (Gneiting and Katzfuss, 2014; Vaicenavicius

et al., 2019). Thus, in practice, it is common to check whether the probabilistic

classifier is calibrated (Dawid, 1982; Gupta et al., 2020; Murphy and Epstein,

1967). In the context of binary classification, calibration is often defined as

follows (see Gupta and Ramdas 2022; Widmann et al. 2019 for multi-class

calibration):

Definition 6 (Marginal calibration). A probabilistic binary classifier g : X −→
[0,1] is marginally calibrated if, and only if,

P(Y = 1|g(X)) = g(X) (almost surely). (4.8)

Equation 4.8 is often referred to as calibration or perfect calibration. For

instance, consider a classifier predicting whether a person has a disease: if

the classifier is marginally calibrated, then for all individuals assigned a 70%

probability of being sick, approximately 70% of them will indeed have the

disease.

4.3.1 Evaluating Marginal Calibration

There are many ways to evaluate whether a probabilistic binary classifier

is calibrated in the sense of Definition 6:

Calibration Plot (Reliability Diagram). A calibration plot, also known as

reliability diagram (Zadrozny and Elkan, 2002), is a graphical tool that com-

pares the estimated probabilities g(x) with the actual outcomes on a holdout

set. The predicted probabilities are partitioned into bins, and within each bin,

the average predicted probability is compared with the observed frequency of

the positive class. Formally, given a set of estimated probabilities {g(xi)}ni=1
evaluated on a holdout set not used for training, the steps are as follows:

89

4.3. Calibration of Classification Models

1. Sort the predicted probabilities {g(xi)}ni=1.

2. Divide the sorted probabilities into J contiguous bins.

3. For each bin Bj , calculate the observed proportion of sample points that

fall into Bj :

ôj = 1
|Bj |

∑
i∈Bj

yi,

and the average estimated probability in Bj :

p̂j = 1
|Bj |

∑
i∈Bj

pi.

4. Create a scatter plot of (p̂j , ôj).

By construction, ôj is an estimate of P(Y = 1|g(X) ∈ Bj). Thus, if g is

marginally calibrated, we expect that p̂j ≈ ôj for all j. Deviations from the

diagonal p̂k = ôk indicate miscalibration.

Figure 4.6 shows an example of a calibration plot generated from simulated

data, where the estimated probabilities and the observed outcomes are com-

pared across different probability bins. The dashed diagonal line represents

perfect calibration, and deviations from this line illustrate areas where the

model is miscalibrated.

Expected Calibration Error (ECE). The Expected Calibration Error is a sum-

mary statistic derived from the calibration plot that quantifies the difference

between predicted probabilities and observed frequencies across bins:

ECE =
J∑

j=1

|Bj |
n

∣∣ôj − p̂j

∣∣
A lower ECE indicates better calibration.

Maximum Calibration Error (MCE). The Maximum Calibration Error is

a more conservative summary statistic, focusing on the worst-case deviation

across all bins:

MCE = max
j=1,...,J

∣∣ôj − p̂j

∣∣ .
90

Chapter 4. Diagnostics and Recalibration

Figure 4.6: Example of calibration plot (a.k.a. reliability diagram) comparing

estimated probabilities with observed frequencies in each bin.

Again, low MCE values indicate better calibration.

If one concludes that g is not calibrated, it can be recalibrated. The next

section discusses ways to recalibrate g.

4.3.2 Recalibration of Probabilistic Classifiers

Several methods exist to recalibrate g to improve its marginal calibration.

Below are a few approaches:

Platt scaling. Let g : X −→ [0,1] be a binary probabilistic classsifer that

outputs a score g(x) for each input x. Platt scaling (Platt et al., 1999) fits a

logistic regression model to these scores, aiming to find a transformation that

better reflects the true probabilities.

The recalibratied probabilities g′(x) is given by:

g′(x) = 1
1 + exp(αg(x) + β) ,

where α and β are parameters determined by fitting the logistic regression

model on a labeled dataset {(g(xi),yi)}ni=1.

Histogram binning. Histogram binning (Zadrozny and Elkan, 2001) is a

non-parametric version of Platt scalling. The idea is to use the calibration plot

91

4.3. Calibration of Classification Models

(Section 4.3.1) to recalibrate g. Specifically, for each x ∈ X , the recalibrated

version of g is given by

g′(x) = p̂j ,

where j is the bin Bj that contains x.

Isotonic regression. Isotonic regression (Zadrozny and Elkan, 2002) fits a

non-decreasing function to the estimated probabilities g(x), ensuring that the

recalibrated probabilities are better aligned with the observed frequencies of

the positive class. Specifically, given a set of estimated probabilities {g(xi)}ni=1,

isotonic regression recelibrates g by finding the function g′(x) that minimizes

the Brier Score:
n∑

i=1
(ĝ(xi)− yi)2

subject to the constraint

g′(xi+1)≥ g′(xi) for all i.

Temperature scaling. Temperature scaling is a simple recalibration tech-

nique used primarily with neural networks (Guo et al., 2017). It recali-

brates g(x) by reescaling its logit values by a constant factor. Specifically,

let logit(p) = log(p/(1− p)) be the logit of p. Temperature scaling recalibrates

g according to

logit(g′(x)) = 1
T

logit(g(x)),

where T is the temperature parameter, typically chosen by minimizing the

negative log-likelihood or the Brier Score on a validation set. T > 1 smooth

the predicted probabilities, reducing overconfidence in the predictions. In

particular, when T −→ ∞, g′(x) = 1/2. When T = 1, no transformation is

made.

4.3.3 Limitations of Marginal Calibration

A classifier can be marginally calibrated even if it disregards information in

x. This parallels the scenario in regression (Theorem 5). In fact, g is calibrated

92

Chapter 4. Diagnostics and Recalibration

if and only if there exists a space Z and a function λ : X −→Z such that

P(Y = 1|λ(X)) = g(X) (almost surely);

see Vaicenavicius et al. 2019, Proposition 1 and Gupta et al. 2020, Proposition

1. Thus, while g(x) = P(Y = 1|x) is calibrated, marginal calibration does not

imply that g fully utilizes the information in x. For example, g(X) := P(Y = 1)
is marginally calibrated. In other words, marginal calibration does not ensure

that the Bayes classifier1
is recovered, that is, g(X) can be very different from

P(Y = 1|X). Moreover, it does not guarantee fairness; it is possible that P(Y =
1|X ∈A,g(X)) , g(X), where A⊂X represents a subgroup of interest.

Therefore, we suggest that marginal calibration should be evaluated only

after selecting the best probabilistic classifier based on a suitable proper loss

function, as discussed in Section 3.1. Marginal calibration alone should not

drive classifier selection, as it may not reflect the optimal exploitation of infor-

mation in x.

4.3.4 Example

In this toy example, we apply several calibration methods to a logistic

regression model trained on synthetic data generated as follows:

1. The input features X were drawn from a standard normal distribution:

Xi ∼N (0,1) for i = 1,2, . . . ,n.

2. The binary labels Y were generated according to a logistic model with a

non-linear transformation of the input features. Specifically, the proba-

bility of the positive class was given by:

P(Yi = 1|xi) =
exp

(
x3

i

)
1 + exp

(
x3

i

) .

The labels were then sampled as:

Yi ∼ Bernoulli(P(Yi = 1 |Xi)) .

1
Here, P(Y = 1|X) is referred to as the Bayes classifier.

93

4.3. Calibration of Classification Models

3. A logistic regression model was trained on the training set to predict the

probability of the positive class P(Y = 1|x).

We trained the model on 1000 samples and used 2000 for recalibration and

performance evaluation. While these same 2000 samples were used for both,

the notebook (Classification Calibration Notebook) also includes evaluation on

an independent test set, confirming that results are not biased by overfitting.

Since the independent set results were similar, they are omitted here.

Figure 4.7: Calibration plots for different recalibration methods applied to

a logistic regression model. Each plot compares the estimated probabilities

against the observed frequencies on a validation set. The diagonal line repre-

sents perfect marginal calibration.

The calibration plots in Figure 4.7 and the metrics in Table 4.1 show that

histogram binning is the only method that enhances both proper loss functions

and marginal calibration. However, note that histogram binning inherently

achieves perfect calibration because its recalibration is specifically designed

to produce a perfect calibration plot. Additionally, while isotonic regression

improves calibration, it worsens the loss functions. This happens because

the calibration plot is non-monotonic, causing probabilities in the range of

approximately 25% to 75% to be mapped to 50%.

94

https://github.com/rizbicki/UQ4ML/blob/main/notebooks/Classification_Calibration_Notebook.md

Chapter 4. Diagnostics and Recalibration

4.4 Summary

In this chapter, we explored techniques for assessing and improving the ac-

curacy of conditional density estimates and classification models. We began by

introducing the concept of Probability Integral Transform values, a straightfor-

ward diagnostic tool used to evaluate whether a conditional density estimator,

f̂ , is globally consistent with the true density f . While PIT values provide a

useful first check – where uniformity suggests a good fit – we highlighted the

limitations of this method. Specifically, we showed that even poorly specified

models might pass the PIT uniformity test, making it an insufficient criterion

for model validation.

Table 4.1: Comparison of Calibration Methods: Expected Calibration Error

(ECE), Maximum Calibration Error (MCE), Negative Brier Score, and Log Loss

for different calibration methods applied to a logistic regression model. Lower

values indicate better performance.

Method ECE MCE Brier Score Log Loss

Before Calibration 0.085 0.272 0.196 0.566

Isotonic 0.027 0.177 0.250 0.694

Platt 0.096 0.225 0.198 0.575

Histogram Binning 0.000 0.000 0.185 0.531

Temperature Scaling 0.081 0.203 0.198 0.567

To address these shortcomings, we introduced Conditional PIT values. Un-

like global PIT, which assesses uniformity across the entire dataset, Conditional

PIT values focus on the distribution of PIT values given specific covariates. This

more granular approach allows us to identify where the model deviates from

the true conditional density, offering a clearer path to improvement.

In parallel, we examined calibration in classification models. Calibration

is crucial for ensuring that the predicted probabilities from a classifier are

reliable. We defined marginal calibration – where the predicted probability of an

event closely matches the observed frequency – and presented several methods

to assess and improve calibration, including Platt scaling, Histogram binning,

Isotonic regression, and Temperature scaling. Through examples, we showed how

these methods could be applied to recalibrate classifiers, improving both the

model’s reliability and its predictive accuracy.

A key takeaway from this chapter is that calibration – whether in the con-

95

4.4. Summary

text of regression or classification – should be considered only after selecting

the best model using appropriate loss functions. Calibration alone does not

guarantee that a model fully captures the relationships within the data or that

it leverages all available information. Therefore, it should be seen as the fi-

nal step in the modeling process, ensuring that the selected model provides

trustworthy predictions.

96

Chapter 5

From Conditional Densities
to Prediction Regions

Color Study. Squares with Concentric Circles. Wassily Kandinsky, 1913,

Städtische Galerie im Lenbachhaus, Munich.

5.1. Optimal Prediction Regions

A good forecaster is not smarter

than everyone else, he merely has

his ignorance better organized.

Unknown Author

Oftentimes, the end goal of a supervised learning model is to provide pre-

diction regions for new sample points. Prediction regions are sets of possible

outcomes that reflect the range within which the true outcome is likely to fall,

given a new sample point. These regions provide a more complete picture of

the model’s predictions by offering a range rather than a point estimate, thus

incorporating uncertainty into the prediction process.

Formally, a prediction region is defined as follows:

Definition 7 (Prediction region). A prediction region (or prediction set, or pre-

diction band) is a function R : X −→ P(Y), where P(Y) is the set of the parts of
Y .

In this chapter, we will begin by exploring the concept of optimal – also

known as oracle – prediction regions derived from different loss functions. This

understanding will lay the foundation for developing and assessing various

methods for estimating prediction regions in practice. Next, we will exam-

ine techniques for estimating these regions, focusing on conformal methods,

which offer guaranteed coverage, making them robust tools for uncertainty

quantification.

5.1 Optimal Prediction Regions

To define optimal prediction regions, we start by introducing a loss func-

tion, denoted as

L : P(Y)×X ×Y −→ R,

where L(R; (X,Y)) quantifies the cost associated with a prediction region

R⊆ Y when the input X and true output Y are observed.

The goal is to find an optimal prediction region that minimizes the overall

98

Chapter 5. From Conditional Densities to Prediction Regions

expected loss, also known as the risk. The risk function is defined as:

R : (X −→P(Y))−→ R,

R 7−→R(R) := EX,Y [L(R; (X,Y))],

where R(R) represents the expected loss or risk associated with a prediction

region R over the joint distribution of X and Y . The expectation is taken

with respect to the distribution of both the input X and the output Y , making

the risk function a measure of how well the prediction region R performs on

average.

Different choices of the loss function L lead to different forms of optimal

prediction regions. For example, some loss functions might penalize regions

that are too large or too small, while others might emphasize the inclusion of

the true output Y within the region. The next examples will illustrate common

types of prediction regions that arise from different loss functions, as shown

in Figure 5.1. These examples show how varying the loss function influences

the shape and properties of the optimal prediction region, reflecting different

practical considerations. The optimal regions are also known as oracle regions,
since they require knowledge of f(y|x) or, at the very least, certain properties

of it.

Exemple 5.1 (HPD Region). Consider a loss function defined as

L(R,(x,y)) = I(y <R) + λVol(R),

where I(y <R) is 1 if the true outcome y is not in the prediction region R, and

0 otherwise, and Vol(R) represents the size of the region. This loss function

combines two objectives:

• Coverage term (I(y <R)): Penalizes the model when the true outcome y

falls outside the predicted region R. This term encourages the region R

to include y as often as possible.

• Size term (Vol(R)): Penalizes the model for making the prediction region

R too large. A smaller region R is preferable for more precise predictions,

but shrinking R too much may increase the likelihood of excluding the

true outcome y.

99

5.1. Optimal Prediction Regions

The value λ > 0 balances the trade-off between including y in R and keeping

R small. The prediction region that minimizes the risk associated to this loss

is the Highest Predictive Density Region (HPD):

R(x) = {y ∈ Y : f(y|x) > λ} ,

where f(y|x) is the conditional density of y given x. The HPD region includes

the most likely values of y and balances accuracy with the region’s size.

Figure 5.1: Illustration of the optimal prediction regions corresponding to

different loss functions: the highest predictive density (HPD) region from

Example 5.1, the quantile-based region from Example 5.2, and the symmetric

region from Example 5.3. Each plot shows how the choice of loss function

influences the shape and properties of the resulting prediction region.

HPD regions are applicable in both regression and classification settings.

In regression, different loss functions can lead to various types of prediction

regions.

Exemple 5.2 (Quantile-based Region). Consider the case where Y ⊂ R. Fix

α ∈ (0,1) and assume that the prediction region is an interval, R(x) = (a(x), b(x)).
The interval loss (Winkler, 1972) is defined by

L((a,b),(x,y)) = α
b(x)− a(x)

2 + [(a(x)− y)+ + (y− b(x))+] .

This loss function combines two components: the length of the prediction

interval and a penalty for y falling outside the interval. The first term,

100

Chapter 5. From Conditional Densities to Prediction Regions

α b(x)−a(x)
2 , reflects the length of the interval, weighted by α. The second term,

[(a(x)− y)+ + (y− b(x))+], is a penalty that captures how far y lies from the

interval. If y is inside (a(x), b(x)), this term equals zero, ensuring no penalty.

However, if y lies outside the interval, the penalty grows proportionally to the

distance between y and the nearest interval boundary.

The optimal prediction region that minimizes the risk for this loss function

is the quantile-based interval:

R(x) = (qα/2(x), q1−α/2(x)),

where qγ(x) = F −1(γ|x) represents the γ-th conditional quantile of Y given x.

This interval captures the middle 1−α portion of the conditional distribution

of Y .

Exemple 5.3 (Symmetric Region). Consider the case where Y ⊂ R. Fix λ > 0
and assume that the prediction region is an interval, R(x) = (a(x), b(x)). The

symmetric interval loss is defined by

L((a,b),(x,y)) = λ
b(x)− a(x)

2 +
[
y− a(x) + b(x)

2

]
2

b(x)− a(x) .

This loss function consists of two components: the width of the prediction

interval and a penalty for y deviating from the center of the interval. The first

term, λ
b(x)−a(x)

2 , reflects the length of the interval, weighted by λ. The second

term,

[
y− a(x)+b(x)

2

]
2

b(x)−a(x) , is a penalty that increases based on the distance

of y from the midpoint of the interval. If y is equal to the midpoint, this term

equals zero, ensuring no penalty. However, the further y deviates from the

center, the greater the penalty.

The optimal prediction region that minimizes the risk for this loss function

is the symmetric interval:

R(x) = E[Y |x]±
√

λV[Y |x],

where E[Y |x] represents the conditional mean of Y given x, and

√
V[Y |x]

represents the conditional standard deviation of Y given x. This interval

101

5.2. Plug-in Prediction Regions

is centered around the expected value, with the width proportional to the

standard deviation, scaled by the factor

√
λ.

Each prediction regions has its own strengths and weaknesses:

HPD Region: These regions are particularly effective for capturing the

most probable outcomes, making them well-suited for skewed or multimodal

distributions. However, they can result in irregularly shaped regions that are

computationally challenging to handle/report.

Quantile-based Region: Quantile-based intervals are straightforward to

compute and interpret, requiring only two numbers to represent the interval.

However, these regions might lead to wide regions in multimodal cases.

Symmetric Region: Symmetric regions are easy to compute and are par-

ticularly effective for symmetric distributions, also needing just two numbers

for representation. However, they can become large in skewed distributions.

5.1.1 Tuning Parameters and Notions of Coverage

In practice, tuning parameters in loss functions, such as λ in Example

5.1, are chosen to ensure the resulting prediction region achieves the desired

coverage. Typically, λ is adjusted for each x to theoretically achieve conditional
coverage:

P(Y ∈R(X)|X) = 1−α (a.e.). (5.1)

See Section 5.2 for more details. If R(x) satisfies conditional coverage, marginal
coverage is also achieved:

P(Y ∈R(X)) = 1−α. (5.2)

In the next sections, we explore methods to approximate optimal regions.

5.2 Plug-in Prediction Regions

One straightforward approach to constructing prediction regions involves

leveraging an initial estimate of the conditional density function, f̂ , and di-

102

Chapter 5. From Conditional Densities to Prediction Regions

rectly plugging it into the expression for the optimal region. For example, an

estimated Highest Predictive Density (HPD) region can be obtained as:

{y : f̂(y|x)≥ t1−α(x)},

where the threshold t1−α(x) is chosen such that:∫
{y:f̂(y|x)≥t1−α(x)}

f̂(y|x)dy = 1−α.

Similarly, prediction regions can be derived without needing full knowl-

edge of f(y|x) by directly estimating critical quantities. For instance, a quantile

regressor that provides estimates q̂α/2 and q̂1−α/2 can be used to construct the

prediction region:

{y : q̂α/2(x) < y < q̂1−α/2(x)}. (5.3)

While these quantiles can also be derived using f̂ , this direct estimation offers

a more practical approach in many scenarios.

Plug-in prediction regions are designed primarily to capture the aleatoric

uncertainty inherent in the data. However, since the quantities such as the

conditional density f(y|x) or the quantiles qα/2(x) are only estimated from

data, the resulting prediction regions often do not achieve the correct coverage.

In the next section, we will explore methods that build upon these estimates

and also incorporate epistemic uncertainty, leading to prediction regions that

more accurately reflect all uncertainty associated to Y , and that also achieve

the desired coverage.

5.3 Conformal Regions

The main goal in conformal predictions is to use the data to obtain a valid

prediction region (that is, a prediction region whose coverage matches its

nominal coverage), R(Xn+1) , under very few assumptions. Indeed, typically,

validity depends only the i.i.d. assumption (Angelopoulos, Bates, et al., 2023;

Shafer and Vovk, 2008; Vovk et al., 2005).

A widely employed approach for constructing such prediction regions is

103

5.3. Conformal Regions

the split method (Lei et al., 2018; Papadopoulos et al., 2002; Vovk, 2012). In

this method, the data is divided into two sets: the training set, D1, and the

calibration set, D2. We assume that the size of the calibration set is |D2| = n.

Typically, the calibration set can be much smaller than the training set; see

Section 5.3.1 for some guidance on how to make such split.

After the data has been split, a non-conformity score h : X × Y → R is

trained usingD1. The function h(x,y) is used to quantify the extent to which a

given label value y aligns with the feature values x of an instance. A high value

of h(x,y) suggests that the appearance of label y in an instance characterized

by features x is improbable. In the context of regression, a few examples of

non-conformity scores are:

• [Regression-split] h(x,y) = |y− r̂(x)|, where r̂ is an estimate of the re-

gression of Y on x (Lei et al., 2018). This measures the absolute difference

between the observed value y and the predicted value r̂(x), indicating

how far the actual outcome deviates from the regression prediction and

is essentially the regression residual.

• [Weighted] h(x,y) = |y−r̂(x)|
ρ̂(x) , where ρ̂(x) is any estimator of the condi-

tional mean absolute deviation of |Y − r̂(X)||X = x (Lei et al., 2018). This

score normalizes the absolute difference between y and the predicted

value r̂(x) by the expected deviation around the prediction, making the

non-conformity score relative to the aleatoric variability in the data.

• [CD-split and variations] h(x,y) =−f̂(y|x) (Izbicki et al., 2020; Izbicki et

al., 2022; Lei and Wasserman, 2014). This measures the nonconformity

via the estimated conditional density of y given x, meaning a lower

density indicates a less likely outcome.

• [HPD-split] h(x,y) =−
∫
{y′:f̂(y′|x)≤f̂(y|x)} f̂(y′|x)dy′

(Izbicki et al., 2022).

This score quantifies how far y is from the highest density regions by

highlighting how unusual y is relative to other possible outcomes and

is inspired by FBST’s e-value (Pereira and Stern, 1999; Pereira and Stern,

2022).

• [CQR] h(x,y) = max{q̂α1(x)− y,y − q̂α2(x)}, where q̂α1 , q̂α2 , α1 < α2,

are quantile estimates (Romano et al., 2019). This measures how far y

104

Chapter 5. From Conditional Densities to Prediction Regions

is from the quantile estimates, capturing how much y deviates from the

predicted lower and upper quantile boundaries for x.

• [CDF-split] h(x,y) = |F̂ (y|x)− 1/2| where F̂ is a CDF estimate (Cher-

nozhukov et al., 2021). This measures the distance between the CDF

value of y and 1/2, indicating how centered y is within the distribution

of possible outcomes, with values near 1/2 being more typical.

Note that the non-conformity scores involving conditional densities can also

be applied to classification tasks (see Section 5.3.5). For non-conformity scores

that handle multivariate responses with mixed data types, refer to Dheur et al.

(2024). Additionally, Manokhin (2022) provides a comprehensive list of papers

on conformal predictions.

The conformal region has the shape

R(xn+1) = {y : h(xn+1,y)≤ t} ,

which means it consists of all y that are highly conformal to x. The non-

conformity score h determines the shape and properties of the prediction

region.

For example, regression-split always leads to homoscedastic intervals cen-

tered around r̂(x),

R(xn+1) = [r̂(xn+1)− t, r̂(xn+1) + t],

while the weighted approach can result in heteroscedastic symmetric intervals,

R(xn+1) = [r̂(xn+1)− ρ̂(x)t, r̂(xn+1) + ρ̂(x)t].

On the other hand, using h(x,y) = −f̂(y|x) can result in regions that are not

necessarily intervals; they can be unions of intervals, for instance. CDF-split

leads to prediction intervals around the median of Y |x:

R(xn+1) = [F̂ −1(1/2− t|xn+1), F̂ −1(1/2 + t|xn+1)].

CQR, meanwhile, results in a calibrated version of quantile-based prediction

105

5.3. Conformal Regions

Figure 5.2: Prediction regions given by the following methods: CD-Split,

which is based on f̂(y|x) (Izbicki et al., 2020), Dist-split, which is based on

F̂ (y|x) (Izbicki et al., 2020), and Regression-split, which is based on r̂(x) (Lei

et al., 2018).

intervals (Equation 5.3):

R(xn+1) = [q̂α1(xn+1)− t, q̂α2(xn+1) + t],

that is, CQR expands or contracts the plugin regions [q̂α1(xn+1), q̂α2(xn+1)] to

achieve the correct coverage. Some examples of prediction regions given by

various non-conformity scores are shown in Figure 5.2.

After selecting the non-conformity score, the next step is to determine the

cutoff t. The split conformal method proceeds as follows. First, we compute

the random variable Ui := h(Xi,Yi) for each sample point (Xi,Yi) ∈ D2. The

cutoff t is then set to be

t := U⌈1−α⌉,

the ⌈n(1−α)⌉ order statistic among U1, . . . ,Un.

The next theorem shows that split conformal regions have the right marginal

coverage:

Theorem 9. (Lei et al., 2018; Papadopoulos et al., 2002; Vovk, 2012) If the data is

106

Chapter 5. From Conditional Densities to Prediction Regions

i.i.d., the prediction region

R(Xn+1) =
{

y : h(Xn+1,y)≤ U⌈1−α⌉
}

is a marginally valid prediction region, that is,

P(Yn+1 ∈R(Xn+1))≥ 1−α.

Proof. Because the data is i.i.d., the rank of Un+1 is uniform among {1, . . . ,n+1}.
It follows that

P(Yn+1 ∈R(Xn+1)) = P
(
Yn+1 ∈

{
y : h(Xn+1,y)≤ U⌈1−α⌉

})
= P

(
h(Xn+1,Yn+1)≤ U⌈1−α⌉

)
= P

(
Un+1 ≤ U⌈1−α⌉

)
≥ 1−α.

Remarkably, Theorem 9 does not assume that the non-conformity score

needs to be correctly specified. For instance, the regression function r(x) does

not be well estimated if the score h(x,y) = |y− r̂(x)| is used: marginal coverage

will still be achieved.

If the non-conformity score is continuous, the coverage does not exceed

1−α by too much:

Theorem 10. (Lei et al., 2018) If the data is i.i.d. and h(X,Y) is continuous, the
prediction region

R(Xn+1) =
{

y : h(Xn+1,y)≤ U⌈1−α⌉
}

is such that
P(Yn+1 ∈R(Xn+1))≤ 1−α + 1

n + 1 .

From a computational perspective, after training the non-conformity score,

computing prediction bands becomes straightforward. The following R code

shows this using the regression-split non-conformity score calculated with a

K-Nearest Neighbor approach (Section 2.6.2) with K = 10. The conformal

calibration of the prediction sets is performed in line 25. The code leads to the

estimates shown in Figure 5.3.

107

5.3. Conformal Regions

1 # Load the necessary libraries

2 library(FNN)

3 library(dplyr)

4

5 # Example data

6 n <- 500

7 x <- runif(n)

8 y <- sin(2 * pi * x) + rnorm(n, sd = 0.1)

9 data <- data.frame(x = x, y = y)

10

11 # Split the data into training and calibration sets

12 train_indices <- sample(seq_len(n), size = 0.7 * n)

13 train_data <- data[train_indices,]

14 calibration_data <- data[-train_indices,]

15

16 # k-NN regression to define the non-conformity score

17 predictions <- FNN::knn.reg(

18 train = as.matrix(train_data$x),

19 test = as.matrix(calibration_data$x),

20 y = train_data$y,k = 10)

21

22 # Conformal calibration

23 t <- quantile(abs(predictions$pred - calibration_data$y), probs =

0.95)

24

25 # Generate a fine grid for the x-axis

26 grid_data <- data.frame(x_grid = seq(min(data$x), max(data$x),

length.out = 500))

27

28 # Evaluate predictions on the grid

29 grid_data <- grid_data %>%

30 mutate(y_pred = FNN::knn.reg(

31 train = as.matrix(train_data$x),

32 test = as.matrix(grid_data$x_grid),

33 y = train_data$y,

34 k = 10)$pred)

35

36 # prediction bands are then given by (y_pred-t,y_pred+t)

In this example, the marginal coverage of the intervals obtained for the spe-

108

Chapter 5. From Conditional Densities to Prediction Regions

Figure 5.3: Conformal predictions with kNN regression. The light blue shaded

area indicates the 95% prediction bands calculated using conformal inference,

providing a measure of uncertainty around the predictions.

cific training and calibration data is 97.10% (see the full code at the Conformal

Notebook). Notice that this value does not fall below 95%+1/(n+1)≈ 95.66%,

as the upper bound in Theorem 10 seems to suggest. This is because the ran-

domness in the probabilities involved in both Theorems 9 and 10 include the

randomness over the calibration data. We discuss this in further details in the

next section.

5.3.1 A Different Perspective on Conformal Regions: Toler-
ance Regions

The highest result of education is

tolerance.

Helen Keller

If we examine the derivations of Theorems 9 and 10 more closely, we

observe that the probability associated with the marginal coverage in these

theorems is integrated over:

• The training sample used to construct the non-conformity score, D1,

• The calibration sample used to determine the cutoff t, D2,

• The new data point, (Xn+1,Yn+1).

109

https://github.com/rizbicki/UQ4ML/blob/main/notebooks/Conformal_Notebook.md
https://github.com/rizbicki/UQ4ML/blob/main/notebooks/Conformal_Notebook.md

5.3. Conformal Regions

Therefore, the interpretation of Theorem 9 is as follows: if one were to observe

an infinite number of training and calibration datasets, and for each dataset

assess whether a new observation Yn+1 falls within the prediction region

R(Xn+1), the coverage proportion would be at least 1−α.

However, in practice, we have a single train and a single calibration dataset,

and therefore ideally one would like to guarantee thatP(Yn+1 ∈R(Xn+1)|D1,D2)
to be larger than 1−α. That is, the coverage probability would ideally be larger

than 1−α given the observed data D1,D2. Although this does not hold, the

next theorem shows that there is a high probability that the coverage will be

large for a fixed D1,D2:

Theorem 11. (Bian and Barber, 2023; Vovk, 2012) Let R(·) be a split conformal
prediction region with nominal level 1−α. If the data is i.i.d., for any δ ∈ (0,0.5],

P

(
β(D1,D2)≥ 1−α−

√
log(1/δ)

2n

)
≥ 1− δ,

where β(D1,D2) = P(Yn+1 ∈R(Xn+1)|D1,D2) is the random variable that measures
the probability of coverage for a given calibration and training sets, and n = |D2| is
the size of the calibration set.

Theorem 11 shows that, with high probability, the training and calibration

set are such that a split conditional region has with marginal coverage not

much smaller than the nominal value 1− α. Technically, the split conformal

approach leads to (α +
√

log(1/δ)
2n , δ)− tolerance regions (Fraser and Guttman,

1956; Wilks, 1941). See Hulsman (2022) for additional relationships between

tolerance regions and conformal methods.

Figure 5.4 shows, for various values of δ and n, the maximum distance of

the true coverage β(D1,D2) to 1−α.

Interestingly, Theorem 11 also shows that if a split conformal method is

trained with α′ = α−
√

(2n)−1 log(1/δ), then it will satisfy the stringer condi-

tion that

P(β(D1,D2)≥ 1−α)≥ 1− δ.

This will of course come at the expense that the prediction regions will be

larger.

110

Chapter 5. From Conditional Densities to Prediction Regions

Figure 5.4: Maximum deviation of the nominal coverage 1−α from the true

marginal coverage of conformal sets, expressed as a function of the probability

δ and the calibration sample size n (see Theorem 11).

Theorem 11 can also be used to determine the size of the calibration set.

Specifically, if one desires to have coverage at a distance of at most ϵ from 1−α

with probability 1− δ, one should take

n = log(1/δ)
2ϵ2 .

5.3.2 Comparison to Prediction Sets from Linear Models

Under the standard linear model Y |x ∼ N
(
β⊺x,σ2)

(see Section 3.3) and

assuming the data points are i.i.d., the traditional prediction interval for a new

sample point xn+1 is given by (Neter et al., 1996):

R(xn+1) = [r̂(xn+1)− tl, r̂(xn+1) + tl],

where r̂(xn+1) = β̂⊺xn+1, with β̂ being the least squares estimate of β (Equa-

tion 2.9). The interval width is given by:

tl(xn+1) = t(1−α/2,n−d−1)×
√

σ̂2 (1 + x⊤
n+1(X⊤X)−1xn+1

)
,

111

5.3. Conformal Regions

where

σ̂2 = 1
n− d− 1

n∑
i=1

(
yi− β̂⊺xi

)2
.

This prediction interval differs from the regression-split conformal in-

terval R(xn+1) = [r̂(xn+1) − t, r̂(xn+1) + t], even when the calibration set

is large. Unlike regression-split intervals, which have constant length, the

width of the standard linear prediction interval depends on xn+1 through

x⊤
n+1(X⊤X)−1xn+1. The interval is wider for points xn+1 that are farther from

the bulk of the training data, which have larger epistemic uncertainty.

For this standard prediction interval to be valid, the assumptions of the

linear model must hold. To illustrate this, we run simulations comparing

this interval with conformal intervals obtained via regression-split using the

same linear model. The full details are shown in the Linear Prediction Sets

Notebook.

In the simulations, features are generated as independent draws from a

standard normal distribution with mean zero and variance one. Each sample

consists of 150 features, and 300 sample points are used to train the linear

model via least squares. We use 100 additional sample points to calibrate the

conformal intervals.

The simulation scenarios are as follows:

• Linear Homoskedastic:

yi = 2 ·xi,1 + ϵi, ϵi ∼N (0,σ2),

where σ = 0.3.

• Linear Heteroskedastic:

yi = 2 ·xi,1 +
|xi,1|

2 · ϵi, ϵi ∼ t2,

where t2 follows a Student’s t-distribution with 2 degrees of freedom.

• Nonlinear Heteroskedastic:

yi = sin(5 ·xi,2) +
|xi,1|

2 · ϵi, ϵi ∼ t2.

112

https://github.com/rizbicki/UQ4ML/blob/main/notebooks/linear_prediction_sets.md
https://github.com/rizbicki/UQ4ML/blob/main/notebooks/linear_prediction_sets.md

Chapter 5. From Conditional Densities to Prediction Regions

Figure 5.5: Top: Marginal coverage of conformal and linear prediction sets;

red dashed line at 90% coverage. Bottom: Average size comparison. Linear

models achieve 90% coverage only when specified correctly; conformal meth-

ods provide valid coverage even if misspecified.

Figure 5.5 compares the prediction sets from conformal methods and linear

models across various data-generating schemes. The top panel shows that

while linear models achieve the nominal 90% coverage (indicated by the red

dashed line) when correctly specified, they tend to overcover when the model

is misspecified. In contrast, conformal methods consistently provide valid

coverage in all scenarios. The bottom panel shows that in misspecified settings,

the linear model produces larger prediction intervals.

Figure 5.6 displays the fitted prediction intervals for data generated from

113

5.3. Conformal Regions

the model

yi = 1
100 ·xi + ϵi, ϵi ∼N (0,σ2),

with σ = 0.3, as a function of xi. The intervals derived from the linear model

widen in regions with sparse training data, reflecting increased epistemic

uncertainty due to a lack of sufficient information. In contrast, the intervals

produced by regression-split remain homoscedastic, maintaining a constant

width throughout.

Figure 5.6: Comparison of prediction intervals from the conformal method

(blue) and a linear model (green). Black points represent independent test

data, and the red linear is the least squares fit.

5.3.3 Achieving Asymptotic Conditional Coverage

Conformal methods do not control coverage conditional on x (Equation

5.1). Indeed, it can be shown that exact conditional validity can be obtained

only under strong assumptions about the distribution of (X,Y) (Foygel Barber

et al., 2021; Lei and Wasserman, 2014; Vovk, 2012).

However, under further assumptions about how the non-conformity score

is computed, some non-conformity scores lead to prediction regions that also

have other good properties such as asymptotic conditional validity. We illus-

trate this on HPD-split (Izbicki et al., 2022), which uses the non-conformity

score

h(x,y) =−
∫
{y′:f̂(y′|x)≤f̂(y|x)}

f̂(y′|x)dy′.

114

Chapter 5. From Conditional Densities to Prediction Regions

This score is represented by the shaded in Figure 5.7.

Figure 5.7: The HPD-split score of the sample point (xi,yi) is given by the

(negative) of the shaded area on the plot.

First, Y is assumed to belong to a bounded space:

Assumption 4. Y ∈ Y , where Y is bounded.

Second, f̂(y|x) is assumed to be consistent:

Assumption 5 (Consistency of f̂). There exist ηn = o(1) and ρn = o(1) s.t.

P

(
E

[
sup
y∈Y

(
f̂(y|X)− f(y|X)

)2
∣∣∣∣f̂
]
≥ ηn

)
≤ ρn

Similarly, the conditional cumulative density function of f(Y |X), which

we denote by H(z|x), needs to be assumed to be well behaved: it needs to be

smooth (bounded density) and have no plateau close the α quantile:

Assumption 6. For every x, H(u|x) is continuous, differentiable and dH(u|x)
du ≤M1.

Also dH(u|x)
du ≥M2 > 0 in a neighborhood of qα(x).

Under the above assumptions HPD-split converges to the 1−α-level HPD

Region (Example 5.1) and satisfies asymptotic conditional coverage:

115

5.3. Conformal Regions

Theorem 12 (Izbicki et al. (2022)). Under Assumptions 4, 5, 6 and if the the data is
i.i.d., the 1−α-level HPD-split region converges to the 1−α-level HPD set and there
exist random sets, Λn, such that P(Xn+1 ∈Λn|Λn) = 1− oP(1) and

sup
xn+1∈Λn

∣∣P(Yn+1 ∈R(Xn+1)|Xn+1 = xn+1)− (1−α)
∣∣= o(1).

Other scores that also satisfy asymptotic conditional validity are CD-split

(Izbicki et al., 2020), Dist-Split (Izbicki et al., 2020), and CQR (Romano et

al., 2019). Additionally, regression-split satisfies this property under more

stringent assumptions, such as the condition that the distribution of Y − r(X)
is independent of X. This assumption is not met for instance in the case of

Figure 5.2, where the method undercovers Y for large values of x.

5.3.3.1 Label-Conditional Conformal Regions

A second, often desired, type of conditional coverage is class-conditional

(or label-conditional) coverage, defined as:

P(Yn+1 ∈R(Xn+1)|Yn+1)≥ 1−α (almost surely).

This criterion ensures that the predictive region R(Xn+1) contains the true

label with high probability, conditioned on the label itself. Class-conditional

coverage becomes especially useful in settings involving dataset shift, where

the joint distribution of (X,Y) differs between the training and target domains

(Masserano et al., 2024; Quiñonero-Candela et al., 2022).

In particular, class-conditional coverage is crucial under prior probability
shift, a specific form of dataset shift where the conditional distribution X|Y
remains stable, but the class priorP(Y = y) can vary across domains (Assunção

et al., 2024; Forman, 2008; Podkopaev and Ramdas, 2021; Vaz et al., 2019). This

is because a model trained to satisfy class-conditional coverage on the training

set will continue to maintain this coverage in the target set, even when class

distributions shift.

An approach to constructing conformal prediction sets that ensure class-

conditional coverage in classification problems is to select a distinct conformal

cutoff t for each class y (Sadinle et al., 2019; Vovk et al., 2005). Specifically, the

116

Chapter 5. From Conditional Densities to Prediction Regions

prediction sets take the form

R(xn+1) = {y : h(xn+1,y)≤ ty} ,

where h is the conformal score function. Similar to the standard split conformal

method, we first compute the random variable Ui := h(Xi,Yi) for each sample

point (Xi,Yi) ∈ D2. A separate cutoff ty is determined for each class y by

calculating the 1−α quantile of the set {Ui : Yi = y}, meaning we only consider

the scores of instances with label y.

See Ding et al. (2024) and references therein for other approaches to achieve

label-conditional coverage. Also, see Section 5.3.5 for more on conformal

methods for classification problems.

5.3.4 Local Conformal Regions

A different approach to get closer to control of conditional coverage is

to first create a partition the feature space, say A, and then apply the split

conformal approach to each partition element A ∈ A separately (Boström and

Johansson, 2020; Boström et al., 2021; Foygel Barber et al., 2021; Izbicki et al.,

2022; Lei and Wasserman, 2014; Vovk, 2012). This yields methods that control

local coverage, meaning that, for every A ∈ A,

P(Yn+1 ∈ C(Xn+1)|Xn+1 ∈A)≥ 1−α.

The choice of A is crucial to guarantee that

P(Y ∈ C(X)|X ∈A)≈ P(Y ∈R(X)|X = x) ,

that is, the local conformal regions R(X) will not only have local coverage but

will also be close to conditional coverage.

There are several ways to choose A. For instance, while Lei and Wasser-

man, 2014 partitions the feature space by creating a hyper-rectangular mesh,

Mondrian-based approaches (Boström and Johansson, 2020; Boström et al.,

2021) define a partition with a predefined Mondrian taxonomy (Vovk et al.,

2005). Here, we review Locart (Cabezas et al., 2025), which creates A based

on the following theorem:

117

5.3. Conformal Regions

Theorem 13 (The coarsest partition that controls conditional coverage; adapted

from Cabezas et al. 2025). Let A be a partition of X such that, for any A ∈ A,
x1,x2 ∈ A if and only if h(X,Y)|X = x1 ∼ h(X,Y)|X = x2, where h(X,Y) is any
non-conformity score. Let t∗

1−α(x) be (1−α)-quantile of the non-conformity scores.
Then,

1. If x1,x2 ∈A, then t∗
1−α(x1) = t∗

1−α(x2) for every α ∈ (0,1)

2. If J is another partition of X such that, for any J ∈ J , x1,x2 ∈ J implies that
t∗
1−α(x1) = t∗

1−α(x2) for every α ∈ (0,1), then

x1,x2 ∈ J =⇒ x1,x2 ∈A.

Cabezas et al. (2025) attempts to recover the partition described in this

theorem. The key idea is to use a regression tree, which naturally partitions

the feature space. Now, because regression trees are consistent estimators

of conditional distributions (Meinshausen and Ridgeway, 2006), a regression

tree that predicts the score h(X,Y) using x as an input attempts to recover the

partition described by Theorem 13, that is, the partition that groups features

according to the conditional distribution of the residuals. This is, therefore,

howLocart builds the partitionA. Concretely, once the non-conformity score

h has been defined, Locart consists of the following steps:

1. Create the dataset {(Xi,h(Xi,Yi))} based on the calibration dataset, and

split it into two disjoint sets Ipart and Icut.

2. Fit a regression tree on {(Xi,h(Xi,Yi))}i∈Ipart
that predicts the non-

conformity score h based on the features X. This tree induces a partition

A of the feature space generated by its terminal nodes. Let T : X →A be

the function mapping an element ofX to the partition element it belongs.

3. Estimate t̂1−α(xn+1) for a new instance xn+1 by applying the conformal

approach to all instances in {(Xi,h(Xi,Yi))}i∈Icut
that fall into the same

element of A as xn+1 does. That is, estimate t̂1−α(xn+1) as

t̂1−α(xn+1) = q̂1−α(A(xn+1)) (5.4)

118

Chapter 5. From Conditional Densities to Prediction Regions

where

A(xn+1) = {ŝi : T (xi) = T (xn+1),(Xi, ŝi) ∈ {(Xi, ŝi)}i∈Icut
} .

4. Using t̂1−α(xn+1) from Equation 5.4, define the Locart prediction in-

terval as

R(xn+1) =
{

y : h(xn+1,y)≤ t̂1−α(x)
}

.

Cabezas et al. (2025) shows that this approach not only leads to local valid-

ity, but that under some assumptions it also satisfies asymptotic conditional

validity. The paper also extends Locart to random forests.

5.3.5 Conformal Sets for Classification

In classification tasks, conformal prediction aims to produce sets of labels

that include the true label with a predefined probability, 1−α (Angelopoulos

et al., n.d.; Valle et al., 2023; Vovk et al., 2005). One of the most intuitive

non-conformity scores for classification is based on class probability:

h(x,y) =−f̂(y|x) =−P̂(Y = y|x), (5.5)

which serves as the classification analogue to the CD-split score discussed in

Section 5.3. While this score ensures marginal coverage, it does not guarantee

conditional coverage, even with large sample sizes. This limitation results in

undercoverage for more challenging subgroups and overcoverage for easier

ones.

A more robust alternative is adaptive prediction sets (APS; Romano et al.

2020), where the non-conformity score is defined as:

h(x,y) =
∑

y′∈Y :̂P(Y =y′|x)>P̂(Y =y|x)

P̂(Y = y′|x).

This score is analogous to the HPD-split non-conformity score used in re-

gression (Section 5.3), but is specifically designed for classification. Similar to

the regression version HPD-split (Section 5.3.3), APS also achieves asymptotic

conditional coverage.

119

5.3. Conformal Regions

Next, we apply APS (HPD-Split) and a localized version of the score in

Equation 5.5 (CD-Split; see Izbicki et al. 2022 for details) to the MNIST dataset

(LeCun et al., 1995). The data is divided into three sets: 9% for potential future

samples, 70% for estimating P(y|x), and 21% for calculating split residuals.

The conditional density, P(Y = y|x), is estimated using a convolutional neural

network. Figure 5.8 presents six examples of images and their corresponding

prediction sets. The top row displays examples where two labels were assigned

to each data point. These cases typically appear ambiguous to humans. Both

methods yield similar results.

CD Predicted Label(s): 3, 5, 8
 HPD Predicted Label(s): 3, 5

CD Predicted Label(s): 4, 9
 HPD Predicted Label(s): 4, 9

CD Predicted Label(s): 2, 7
 HPD Predicted Label(s): 2, 7

CD Predicted Label(s): 1
 HPD Predicted Label(s): 1

CD Predicted Label(s): 9
 HPD Predicted Label(s): 9

CD Predicted Label(s): 3
 HPD Predicted Label(s): 3

Figure 5.8: Prediction sets generated by CD-Split and APS (HPD-Split) for

selected instances from the MNIST dataset.

5.3.6 Example: Photometric Redshift Prediction

We apply conformal methods to a key problem in cosmology: estimating a

galaxy’s redshift (y), a proxy for its distance from Earth, based on photometric

features and r-magnitude (x) derived from imaging data. Details about this

problem can be found in Chapter 7.

Here, we construct prediction bands for redshifts using the Happy A

dataset (Beck et al., 2017), specifically designed for comparing photometric

redshift prediction algorithms. Happy A contains 74,950 galaxies from the

Sloan Digital Sky Survey DR12. Our analysis employs 64,950 galaxies for

120

Chapter 5. From Conditional Densities to Prediction Regions

training, 5,000 for prediction, and an additional 5,000 for assessing the perfor-

mance of conformal methods.

Within the training set, we apply random forests to fit the conformity of

reg-split (Lei et al., 2018) and quantile-split (Romano et al., 2019). For density-

based methods (HPD-split (Izbicki et al., 2022), CD-split+ (Izbicki et al., 2020),

and Dist-split (Izbicki et al., 2020)), the non-conformity score is fitted using a

Gaussian mixture density neural network (Section 3.5) with three components,

one hidden layer, and 500 neurons. Using this mixture model, CD-split and

HPD-split generate predictive regions as the union of at most three intervals.

All methods adhere to a marginal coverage level of 1−α = 80%.

Table 5.1 details the local coverage and average size of prediction bands in

two regions of the feature space: bright galaxies and faint galaxies, classified

based on r-magnitude values. While all methods achieve local coverage close

to the nominal 80% level for bright galaxies, this is not the case for faint

galaxies. Nominal coverage for faint galaxies is only achieved by HPD-split

and CD-split+, indicating superior control over conditional coverage in this

context. Additionally, the table reveals that, except for reg-split, all methods

produce regions of similar size. Reg-split yields smaller regions at the expense

of worse local coverage among faint galaxies.

Table 5.1: Coverage and average size of the prediction bands for the photomet-

ric redshift prediction problem, along with their standard errors.

Galaxy HPD-split CD-split+ Dist-split Quantile-split Reg-split

Coverage

Bright 0.800 (0.006) 0.795 (0.006) 0.802 (0.006) 0.808 (0.006) 0.807 (0.006)

Faint 0.788 (0.018) 0.792 (0.018) 0.746 (0.019) 0.754 (0.019) 0.658 (0.021)

Average

Size

Bright 0.050 (0.001) 0.049 (0.001) 0.050 (0.001) 0.051 (0.001) 0.044 (0.000)

Faint 0.065 (0.001) 0.066 (0.001) 0.064 (0.002) 0.074 (0.002) 0.045 (0.000)

Figure 5.9 presents examples of the prediction regions for each method,

with a horizontal line marking the true redshift for each instance. The size of all

prediction regions increases for faint galaxies, which often exhibit multimodal

densities (Kügler et al., 2016; Polsterer, 2016; Wittman, 2009). Specifically, in

the selected instances of faint galaxies, the true redshift is either near 0.25 or

0.75, but never around 0.5. This multimodal behavior suggests that the central

portion of the prediction intervals generated by Dist-split and quantile-split

frequently includes unlikely estimates of the true redshift.

121

5.4. Comparing Linear, Bayesian, Conformal Methods, and Plug-in Approaches

Figure 5.9: Prediction bands obtained for 5 bright and 5 faint galaxies from the

test set. Horizontal lines indicate the true redshift of each galaxy.

5.4 Comparing Linear, Bayesian, Conformal Meth-
ods, and Plug-in Approaches

In this section, we compare the performance of several methods for con-

structing prediction intervals, emphasizing the key conceptual differences be-

tween them.

The data is generated using a homoscedastic linear Gaussian model, where

the response variable y is generated as

y = 5x1 + ϵ, ϵ∼N (0,1),

where x1 is the first feature of x. The features X ∈ R65
are i.i.d. N (0,1) random

variables.

The methods compared are as follows:

• Linear Model: A standard linear regression model is fit using ordinary

least squares. Prediction intervals are based on the assumption of nor-

mally distributed residuals, as detailed in Section 5.3.2.

• Linear Model with Conformal Prediction: This method applies the

regression-split conformal approach to the predictions of the linear model,

yielding prediction sets that provide coverage guarantees without mak-

ing distributional assumptions.

• Bayesian Regression (Bayes): A Bayesian linear regression model is fit

with a Gaussian prior on the regression coefficients. Prediction intervals

122

Chapter 5. From Conditional Densities to Prediction Regions

are derived from the posterior predictive distribution, as described in

Section 6.1.

• Bayesian Regression with Conformal Prediction (Bayes Conformal):
This method incorporates conformal prediction into the Bayesian linear

model using the regression-split conformal approach, ensuring valid

coverage without distributional assumptions.

• Plug-in Method: The plug-in method models f(y|x) as a Gaussian dis-

tribution with mean β̂⊺x and variance σ̂2
, where σ̂2

is the maximum

likelihood estimate (see Equation 3.5). The prediction interval is then the

symmetric plug-in interval based on f̂ (Example 5.3).

• Oracle: These are the oracle symmetric intervals (see Example 5.3) using

the true, but unknown in practice, values of β and σ2
, assuming that

Y |x∼N
(
β⊺x,σ2)

. In this case, all the oracle regions discussed in Section

5.1 are the same because the Gaussian distribution is symmetric and

unimodal.

We simulate data with training sample sizes n, and for each sample size,

we fit the models mentioned above. The prediction regions are calibrated to

have nominal coverage of 90% (for the Bayesian region, we use the coverage

according to the predictive distribution). The code is available at the Predictive

Intervals Comparison Notebook.

Figure 5.10 displays the prediction intervals for each method across the

different training sample sizes for two new data points. When the training

sample size is small, methods that account for epistemic uncertainty – namely

the conformal intervals, the linear model, and Bayesian predictive sets – pro-

duce wider intervals than the oracle, reflecting their ability to capture the

additional uncertainty from limited data. In contrast, the plug-in interval at-

tempts to directly emulate the oracle, often showing similar or even narrower

widths, but at the cost of reduced coverage, falling below the nominal level. As

the sample size increases, all methods gradually converge toward the oracle’s

prediction intervals. Further insights into the role of the Bayesian predictive

distribution in shaping prediction regions can be found in Section 1.2.

123

https://github.com/rizbicki/UQ4ML/blob/main/notebooks/Predictive_Intervals_Comparison_Notebook.md
https://github.com/rizbicki/UQ4ML/blob/main/notebooks/Predictive_Intervals_Comparison_Notebook.md

5.5. Summary

5.5 Summary

In this chapter, we explored various techniques for constructing prediction

regions for the label of a new sample point. We began by deriving optimal

regions according different loss functions, such as the HPD and the quantile-

based regions. We then explored how estimates of the conditional density

f(y|x) can be directly used to provide an estimate of this optimal sets. These

estimated regions however may not have the correct nominal coverage. To

address this challenge, we introduced conformal prediction, a framework de-

signed to generate prediction regions with guaranteed marginal coverage,

assuming only that data points are exchangeable. We saw that different non-

conformity scores yield regions with different properties. In particular some

methods are constructed to ensure that, as the sample size increases, they ap-

proximate the optimal regions closely. Additionally, we examined conformal

methods that are designed to achieve other properties, such as local condi-

tional coverage. We will see another approach to construct prediction bands

in Section 6.1.2.

124

Chapter 5. From Conditional Densities to Prediction Regions

(a) First sample point

(b) Second sample point

Figure 5.10: Prediction intervals for two data points across varying sample

sizes. Methods accounting for epistemic uncertainty produce wider intervals

for small sample sizes, while all methods converge toward the oracle as sample

size increases.

125

5.5. Summary

126

Chapter 6

Capturing Epistemic
Uncertainty through Bayesian
and Ensemble Techniques

La Clairvoyance. René Magritte, 1936, Private Collection.

6.1. Bayesian Models

The greatest obstacle to discovery

is not ignorance – it is the illusion

of knowledge.

Daniel J. Boorstin

In Chapter 3, we explored how aleatoric uncertainty, the inherent variabil-

ity in outcomes given the same input, can be captured through the conditional

density f(y|x), and we discussed several methods for estimating it. While

epistemic uncertainty – our uncertainty about the model itself – can some-

times be directly quantified for specific conditional density estimation models

like f̂(y|x), these approaches are often complex and difficult to work with

(Calonico et al., 2018; Cheng and Chen, 2019). Instead, Chapter 5 shows that

we can address epistemic uncertainty by incorporating it into the construction

of predictive sets derived from f̂(y|x).
In this chapter, we explore how Bayesian models and ensemble techniques

effectively model epistemic uncertainty around Y , offering a structured ap-

proach to quantify and incorporate it alongside aleatoric uncertainty. Addi-

tionally, we discuss the use of bootstrap techniques to assess epistemic uncer-

tainty from a frequentist perspective.

For a broader overview of other related techniques, see Nemani et al. (2023).

6.1 Bayesian Models

In a Bayesian context, we need additional notation. As in the frequentist

setting, the Bayesian model requires a family of distributions that model the

aleatoric uncertainty of Y |x. We will denote this class by

F = {f(y|x,θ) : θ ∈Θ}.

Θ may represent a parametric or a nonparametric space (that is, a space that

cannot be mapped to Rd
). Additionally, the Bayesian model also poses a

distribution over Θ (or, equivalently, over F) which is named the prior distribu-
tion, which for simplicity we assume to have density f(θ) with respect to some

128

Chapter 6. Capturing Epistemic Uncertainty through Bayesian and Ensemble Techniques

dominating measure. The prior distribution encodes the epistemic uncertainty

about the data generating model.

Let D = {(X1,Y1), . . . ,(Xn,Yn)} be the training data. As in most traditional

regression models, in this section we assume that xi’s are fixed. Moreover, we

assume that, given θ, the data points are independent, and that they all have

the same conditional distribution f(y|x,θ).
Prediction in Bayesian models is typically obtained by computing the pre-

dictive density

f(y|x,D) =
∫

f(y|x,D,θ)f(θ|x,D)dθ, (6.1)

where (x,y) represents a new sample point which we assume to be indepen-

dent of D (given θ). This predictive distribution incorporates both the aleatoric

and the epistemic uncertainty.

Under the assumptions that were made, the above expression can be sim-

plified to

f(y|x,D) =
∫

f(y|x,θ)f(θ|D)dθ,

f(θ|D) is the posterior distribution, while f(y|x,θ) is simply the model for

the aleatoric uncertainty. In words, the Bayesian method weights the differ-

ent uncertainty models f(y|x,θ) according to their posterior evidence f(θ|D).
Thus, the Bayesian model naturally models the epistemic uncertainty, which

in this context is the uncertainty regarding the true value of θ∗
. For a deeper

discussion on how these uncertainties are combined, see Section 6.1.1.

Important Warning! In the Bayesian framework, f(y|x) does not represent

the same conditional density discussed in Chapter 3. Instead, it refers to the a
priori predictive density:

f(y|x) =
∫

f(y|x,θ)f(θ)dθ.

In this context, the f(y|x) we aim to estimate in Chapter 3 corresponds to

f(y|x,θ∗), where θ∗
represents the true parameter value.

Many of the models that will be introduced in the following sections are

129

6.1. Bayesian Models

particular cases of the Bayesian approach to uncertainty quantification. We

start with a simple example.

Example: Linear Gaussian Regression. To illustrate these principles, we

now consider a practical example: the application of Bayesian methods to

Gaussian linear regression. In this case, we take F to represent a Gaussian

linear regression model (as in Section 3.3):

Y |x,β ∼N
(
β⊺x,σ2) ,

where for simplicity we assume σ2
is known. Thus, in this case, θ = β. We can

use the following prior distribution:

β ∼N (0,Σd) ,

where Σd is a d× d covariance matrix. This leads to the posterior distribution

β|D ∼N

(
1

σ2

(
1

σ2X
⊺X+Σ−1

d

)−1
X⊺Y,

(
1

σ2X
⊺X+Σ−1

d

)−1
)

,

whereX andY are defined in Section 3.3. Moreover, the predictive distribution,

f(y|x,D), is given by

Y |x,D ∼N

([
1

σ2

(
1

σ2X
⊺X+Σ−1

d

)−1
X⊺Y

]⊺
x,x⊺

(
1

σ2X
⊺X+Σ−1

d

)−1
x + σ2

)
,

Interestingly, this expression reveals that the predictive distribution Y |x,D

is centered around the ridge regression point estimate (discussed in Section

2.6.1), and the predictive variance naturally decomposes into two distinct

components. The term x⊺
(1

σ2 X⊺X+Σ−1
d

)−1 x represents the epistemic un-

certainty, which arises from our lack of knowledge about the regression coef-

ficients β. This uncertainty diminishes as we gather more data, making our

estimates of β more precise. The second term, σ2
, captures the aleatoric un-

certainty, which represents the inherent noise in the data, independent of how

well we estimate β. As the sample size n increases, the epistemic uncertainty

130

Chapter 6. Capturing Epistemic Uncertainty through Bayesian and Ensemble Techniques

term shrinks to zero, leaving only the aleatoric component. We further explore

this in the next section.

6.1.1 Aleatoric vs. Epistemic Uncertainty Revisited

The Bayesian framework offers a clear decomposition of uncertainty into

distinct sources. If we quantify a model’s uncertainty by its variance, the law

of total variance gives the following breakdown:

V [Y |x,D] = Eθ∼f(θ|D) [V [Y |x,θ]] +Vθ∼f(θ|D) [E [Y |x,θ]] . (6.2)

This decomposition shows that the total uncertainty is the sum of the

aleatoric uncertainty (the first term on the right-hand side, which represents

the average intrinsic variability of the outcome Y) and epistemic uncertainty

(the second term, capturing the variation in the prediction due to uncertainty

about θ).

As the training sample size increases, the predictive distribution f(y|x,D)
typically converges to the true conditional density f(y|x,θ∗) (Schervish, 2012).

This happens because, with sufficient data, the uncertainty due to model pa-

rameters (epistemic uncertainty) decreases, leaving only the inherent uncer-

tainty of Y |x (aleatoric uncertainty). Figure 6.1 illustrates this behavior for a

Gaussian example. For small sample sizes, f(y|x,D) is wider than f(y|x,θ∗),
reflecting greater epistemic uncertainty. However, as the sample size increases,

the predictive distribution narrows and approaches the true conditional den-

sity, indicating that only aleatoric uncertainty remains. The code to construct

this plot is available at the Bayesian Density Notebook.

Since f(y|x,D) converges to f(y|x,θ∗) as n grows, it can be used as an

approximation of the true conditional density. This allows prediction regions

to be constructed using f(y|x,D), similar to the oracle regions discussed in

Section 5.1. However, these regions are usually wider than the plug-in regions

from Section 5.2, as they account for both sources of uncertainty. In contrast,

the conditional density estimation techniques described in Chapter 3 capture

only aleatoric uncertainty, as seen in the numerical results from Section 5.4.

In the next section, we explore how plug-in regions based on f(y|x,D) can

also be derived from a rigorous Bayesian decision-theoretic perspective.

131

https://github.com/rizbicki/UQ4ML/blob/main/notebooks/Bayesian_Density_Notebook.md

6.1. Bayesian Models

Figure 6.1: Colored lines represent the predictive distribution f(y|x,D) for

datasets D with different sample sizes n. The black dashed line is the true

distribution f(y|x,θ∗), where θ∗
is the true mean and variance. As n increases,

the predictive distribution converges to f(y|x,θ∗).

6.1.2 Bayesian-Optimal Prediction Regions

The Bayesian framework to statistical inference offers a different approach

to construct predictive regions. From a Bayesian decision-theoretic perspec-

tive, the Bayes risk of a predictive region R is defined as

RB(R) := E[L(R; (X,Y))|D,X].

The expectation is taken with respect to the predictive distribution of the new

label Y , conditional on its features X and the entire training set D (see Sec-

tion 6.1, particularly Equation 6.1, for a detailed explanation of the predictive

distribution).

The Bayes-optimal regions – that is, the regions that minimize RB
– corre-

sponding to the losses discussed in Examples 5.1–5.3 are:

• [HPD Region]
R(x) = {y ∈ Y : f(y|x,D) > λ} ,

• [Quantile-based Region]

R(x) = (qα/2(x;D), q1−α/2(x;D)),

132

Chapter 6. Capturing Epistemic Uncertainty through Bayesian and Ensemble Techniques

where qα(x;D) denotes the α quantile of the predictive distribution

Y |x,D,

• [Symmetric Region]

R(x) = E[Y |x,D]±
√

λV[Y |x,D].

In essence, the Bayesian counterpart to oracle prediction sets replaces the

unknown quantity f(y|x) with the predictive distribution f(y|x,D), which is

known up to computational considerations. Thus, Bayesian regions can be

computed directly. Furthermore, since f(y|x,D) generally converges to the

true conditional density f(y|x,θ∗), these regions tend to approach the oracle

ones as the sample size grows.

6.2 Gaussian Process Regression

Gaussian processes can be used to describe the epistemic uncertainty about

a regression function under a Bayesian framework. They are highly flexible

and can be applied to model complex nonlinear regressions. Next, we explore

two complementary but equivalent viewpoints on Gaussian processes: the

feature space perspective (Section 6.2.1) and the kernel perspective (Section

6.2.2).

6.2.1 Feature Space Perspective

Let Φ : Rd −→ Rp
be a fixed map from the feature space to Rp

. For instance,

the map

Φ(x) = (x1, . . . ,xd,x1x1,x1x2, . . . ,xdxd−1,xdxd)

contains all two-order interactions of the original inputs. Φ is called a feature
map. In its simplest form, a Gaussian process fits a Bayesian linear regression

model (as that described in Section 6.1) to Φ(x). That is, the model assumes

that

Y |x,β ∼N
(
β⊺Φ (x) ,σ2)

133

6.2. Gaussian Process Regression

and uses the following prior distribution:

β ∼N (0,Σp) ,

where Σp is a p× p covariance matrix. The computations of the posterior and

predictive distributions are the same as those derived for linear regression

(Section 6.1), but with x being replaced by Φ(x). Other assumptions about the

likelihood function can also be made, and σ2
may also be estimated from data

(Gramacy, 2020).

Performing the feature map explicitly, however, can be time and memory-

consuming. Fortunately, Gaussian processes can also be implemented using

the kernel trick (Theodoridis and Koutroumbas, 2006). We describe this ap-

proach in what follows.

6.2.2 Kernel Perspective

Notice that the prior distribution over β′
s in the last section induces a

distribution over the space of all regression functions. For instance, for any

x1, . . . ,xn, the properties of the Gaussian distribution imply that the regression

function evaluated at those points, (β⊺Φ (x1) , . . . ,β⊺Φ (xn)), has a multivariate

Gaussian distribution a priori. The kernel perspective of Gaussian processes

builds on this by directly placing a Gaussian distribution in the space of all

regression functions.

Concretely, the kernel perspective views a Gaussian process as a distribu-

tion over functions (namely, the regression functions). Formally, a Gaussian

process is a collection of random variables such that every finite collection of

those random variables has a multivariate normal distribution (Williams and

Rasmussen, 2006). Here we consider Gaussian processes overH, the collection

of all functions from the original feature space Rd
to R. In this case, a Gaussian

process is a distribution over H that is uniquely characterized by its mean

function, m(x) = E[h(x)], and covariance function

K(x,x′) = E
[
(h(x)−m(x))

(
h(x′)−m(x′)

)]
,

134

Chapter 6. Capturing Epistemic Uncertainty through Bayesian and Ensemble Techniques

and is denoted by

h(x)∼GP

(
m(x),K(x,x′)

)
.

If h(x)∼GP(m(x),K(x,x′)) then, for any x1, . . . ,xn,

(h(x1), . . . ,h(xn))∼N(µ,Σ),

where µ = (m(x1), . . . ,m(xn)) and Σ is a n× n covariance matrix whose (i, j)
entrance is given by K(xi,xj).

A common choice for the mean function m(x), particularly when the re-

sponse variable y has been rescaled to have a mean of zero, is the zero mean

function, m(x) = 0. For the covariance function, a commonly employed choice

is the Gaussian (or Radial Basis Function) kernel, given by:

K(x,x′) = σ2
K exp

(
−||x−x′||2

2l2

)
,

where σ2
K is the variance that scales the overall covariance and determines the

concentration of the process around m(x), and l is a length scale parameter

controlling how quickly the covariance between function values decreases as

the distance between input points increases. Figure 6.2 illustrates the effect of

the Gaussian process hyperparameters on the shape of sampled functions. The

prior variance σ2
K controls the concentration of the process around the mean

value, while the length scale l determines the smoothness of the functions.

Smaller length scales lead to more rapid fluctuations, while larger length scales

yield smoother functions.

In the context of regression analysis, a Gaussian process is used to describe

the epistemic uncertainty over the collection of regression functions H by

using GP(m(x),K(x,x′)) as a prior distribution over H. The data consists

of the points (X1,Y1), . . . ,(Xn,Yn), and it is typically assumed that, for each

h ∈H,

Yi|x,h∼N
(
h(xi),σ2)

(see Gramacy 2020 for other assumptions and extensions to the case where σ2

is unknown). This prior is then updated after the data has been observed. It

turns out that the posterior distribution is also a Gaussian process, as is the

135

6.2. Gaussian Process Regression

Figure 6.2: Gaussian process samples for different combinations of the prior

variance (σ2
K) and length scale (l) in a Gaussian kernel. Each panel shows

ten sample functions generated from a Gaussian process with a zero mean

function and a Gaussian covariance kernel.

predictive distribution.

Each kernel corresponds to a different feature space in the formulation of

Section 6.2.1. Some of these feature maps may even have infinite components,

which would make the perspective in Section 6.2.1 impossible to implement

in practice. Indeed, in this case, the approach is fully nonparametric. Also,

each feature space corresponds to a different kernel. For more details about

this connection, see Williams and Rasmussen (2006).

Figure 6.3 presents a scatter plot of the data, the estimated regression line,

the 95% credible interval around r(x) from the posterior distribution h(x)|x,D

(left panel), and the 95% prediction intervals from the predictive distribution

of Y |x,D (right panel) for a simulated example. The code to construct this plot

is available at the Gaussian Process Notebook. The intervals widen in areas

with less training data, indicating increased (epistemic) uncertainty about the

regression function. This is also reflected on the width of the prediction sets.

The choice of prior, determined by the kernel in a Gaussian Process, plays

136

https://github.com/rizbicki/UQ4ML/blob/main/notebooks/Gaussian_Process_Notebook.md

Chapter 6. Capturing Epistemic Uncertainty through Bayesian and Ensemble Techniques

(a) Epistemic uncertainty around r(x) based

on the posterior distribution of h(x)|x,D
(b) Prediction sets based on the predictive dis-

tribution of Y |x,D

Figure 6.3: Gaussian Process Regression: The plot illustrates the original data

points in blue, the estimated regression line in red, and the credible/prediction

bands as the shaded area.

a critical role in shaping the regression estimates and the corresponding cred-

ible and prediction intervals. Figure 6.4 illustrates how different prior distri-

butions, reflected in the selection of kernel correlation of the Gaussian kernel

(determined by l), affect the example in Figure 1.3. The code to construct

this plot is available at the Gaussian Process Kernels. A larger correlation,

which imposes a stronger smoothness assumption, leads to a smoother regres-

sion function that is less responsive to local variations. On the other hand, a

smaller correlation, representing a weaker smoothness assumption, results in

less smooth regression estimates that can capture more of the local variability

in the data, but at the potential cost of overfitting to noise. In practice, hyper-

parameters from the prior distribution such as the length scale l, prior variance

σ2
K , and noise variance σ2

are often estimated using an empirical Bayes ap-

proach, where the marginal likelihood of the data (over h), also referred to as

Type-II maximum likelihood, is maximized (Williams and Rasmussen, 2006).

Concretely, the Type-II log-likelihood is given by

logp(y|θ) =−1
2y⊺(K + σ2I)−1y− 1

2 log |K + σ2I| − n

2 log2π,

where K is the covariance matrix on the observed data computed from the

137

https://github.com/rizbicki/UQ4ML/blob/main/notebooks/Gaussian_Process_Kernels_Notebook.md

6.2. Gaussian Process Regression

kernel function K(xi,xj), I is the n× n identity matrix, y = (y1, . . . ,yn), and

θ are the hyperparameters. This likelihood is a function of the hyperparam-

eters θ. By maximizing this log-likelihood, we obtain the Type-II maximum

likelihood estimates of the hyperparameters.

Figure 6.4: Gaussian Process Regression with Varying Bandwidths: The pan-

els compare the predictions from Gaussian process models with different prior

assumptions (small, moderate, and large bandwidths l). Shaded areas repre-

sent 95% credible intervals for the regression function (that is, the epistemic

uncertainty around r(x)), illustrating how the prior influences both the flexi-

bility of the model and the uncertainty regions.

Gaussian processes become computationally expensive for large datasets.

This is primarily due to the need to invert an n× n covariance matrix, which

requires O(n3) time and O(n2) memory (Williams and Rasmussen, 2006).

However, they can be updated efficiently through rank-one updates, such as the

Sherman–Morrison–Woodbury formula (Press, 2007), which avoids the need

to recompute the entire inverse covariance matrix. This incremental updating

capability makes Gaussian processes well-suited for sequential learning tasks.

A key application is Bayesian optimization, where the goal is to find the global

optimum of an unknown function with minimal evaluations – a topic discussed

in the next section.

6.2.3 Bayesian Optimization and Gaussian Processes

Gaussian process regression is not only useful for quantifying aleatoric and

epistemic uncertainty in prediction problem, but is also effective for optimiza-

138

Chapter 6. Capturing Epistemic Uncertainty through Bayesian and Ensemble Techniques

tion problems, particularly in the context of Bayesian optimization. Bayesian

optimization is widely used to optimize expensive-to-evaluate functions, com-

mon in fields like machine learning and engineering. It is designed to effi-

ciently find the global optimum of functions where gradient-based methods

are impractical or infeasible (Frazier, 2018; Gramacy, 2020).

In Bayesian optimization, the objective function is modeled as a Gaussian

process prior, allowing us to use uncertainty estimates to guide the search for

the optimal solution. This approach balances exploration (sampling where un-

certainty is high) and exploitation (sampling where good results are expected

based on previous evaluations).

Formally, let h(x) represent the unknown objective function, with noisy

observations:

Yi = h(xi) + ϵ,

where ϵ ∼ N(0,σ2) represents noise. The goal is to find x∗
that maximizes

h(x):
x∗ = argmax

x
h(x).

For instance, in hyperparameter tuning for machine learning models, h(x)
could represent the negative mean squared error (MSE) of an XGBoost model,

and x could encode its hyperparameters (e.g., learning rate, tree depth, sub-

sample ratio, and regularization parameters). Bayesian optimization would

seek to maximize the negative validation MSE Yi, an estimate of h(x), while

reducing computational cost, as each evaluation of the function requires refit-

ting the XGBoost and is therefore expensive.

Given sequentially collected data (X1,Y1), . . . ,(Xn,Yn) from previous eval-

uations of the noisy version h(x), a GP is fitted to estimate the posterior

distribution of h(x). Specifically, let µ′(x) represent the posterior mean and

σ′(x) represent the posterior standard deviation of h(x), given the observed

data. The next point, xnext, is chosen by maximizing an acquisition function

that incorporates both the predicted mean and the uncertainty from the GP:

xnext = argmax
x

Acquisition(x|data).

Several acquisition functions are commonly used, including:

139

6.2. Gaussian Process Regression

• Probability of Improvement (PI): PI maximizes the likelihood that the

next sampled point improves upon the current best guess of the maxi-

mum, h′ = maxx µ′(x). The improvement at a new point x is defined as

I(x) = max(h(x)− h′,0), capturing the positive difference between the

function value at x and the current best value, or zero if there is no im-

provement. Since h(x) is unknown, I(x) is treated as a random variable,

and the goal is to maximize the probability that it is greater than zero.

The PI acquisition function computes the posterior probability that the

improvement is positive:

PI(x) := P(I(x) > 0 | data) = P(h(x) > h′ | data),

that is, the probability that h(x) exceeds h′
. In standard GPs, this proba-

bility has a closed-form solution:

PI(x) = Φ

(
µ′(x)−h′

σ′(x)

)
,

where Φ is the cumulative distribution function of the normal distribu-

tion. For other types of models, this probability can be approximated

using Monte Carlo sampling.

• Expected Improvement (EI): EI extends PI by accounting for the magni-

tude of the improvement. It selects points that balance both the proba-

bility and size of the improvement:

EI(x) = E [I(x) | data] ,

which, for standard GPs, has the closed form:

EI(x) = (µ′(x)−h′)Φ
(

µ′(x)−h′

σ′(x)

)
+ σ′(x)ϕ

(
µ′(x)−h′

σ′(x)

)
,

where ϕ is the normal PDF.

• Upper Confidence Bound (UCB): UCB explicitly balances exploration

140

Chapter 6. Capturing Epistemic Uncertainty through Bayesian and Ensemble Techniques

and exploitation by selecting points that maximize:

UCB(x) = µ′(x) + λσ′(x),

where λ controls the exploration-exploitation trade-off: higher λ encour-

ages exploration, while lower values favor exploitation.

An alternative to the usual acquisition functions introduces a hyperparam-

eter ξ into the improvement formula, allowing finer control over the balance

between exploitation and exploration. The modified improvement function is:

I(x;ξ) = max(h(x)−h′− ξ,0),

where ξ ≥ 0. When ξ = 0, we recover the original improvement formula.

As ξ increases, the algorithm favors exploration by acting as if the current

best value is higher than it actually is, encouraging sampling in less-explored

regions. This is particularly useful for avoiding local maxima in the objective

function h, as it pushes the search towards areas of high uncertainty, rather

than solely refining around the current best-known point.

Figure 6.5 shows a GP model approximating a noisy objective function. The

GP’s posterior mean (red line) approximates the true function (black dashed

line) using five blue data points, with the gray region indicating uncertainty.

The other subplots visualize three acquisition functions – PI, EI, and UCB –

guiding the next evaluation. We use 5 standard deviations in UCB. The location

of the observed data points is displayed as vertical lines. Higher acquisition

values highlight more promising points. Each function balances exploration

and exploitation differently, guiding the optimizer to uncertain areas or near

the current maximum. The code to obtain this plot is available at the Bayesian

Optimization Notebook.

Next, we sequentially apply Bayesian optimization to maximize the objec-

tive function using all the previously discussed acquisition functions – EI, PI,

UCB – alongside Random Sampling for comparison. Unlike the other meth-

ods, Random Sampling selects points without considering uncertainty or past

evaluations. Figure 6.6 shows the best value of the objective function identified

at each step. In this case, UCB yields the best performance, while PI struggles,

often getting trapped in the suboptimal local maximum of the objective func-

141

https://github.com/rizbicki/UQ4ML/blob/main/notebooks/bayesian_optimization.md
https://github.com/rizbicki/UQ4ML/blob/main/notebooks/bayesian_optimization.md

6.3. Bayesian Additive Regression Trees (BART)

Figure 6.5: Bayesian optimization with Gaussian Processes using three acqui-

sition functions: PI, EI, and UCB. The top-left plot shows the GP posterior

mean, uncertainty (gray), true objective (dashed), and observed points (blue).

The remaining plots show PI, EI, and UCB guiding the search for the optimum.

Vertical lines show the locations of the observed data.

tion. The code used for this analysis can be found in the Bayesian Optimization

Sequence Notebook.

6.3 Bayesian Additive Regression Trees (BART)

In its simplest form, BART (Chipman et al., 2012) assumes that

Y = h(x) + ϵ =
B∑

b=1
gb(x) + ϵ,

where ϵ ∼ N(0,σ2). Each gb(x) is assumed to be constant across hyperrect-

angles defined over the feature space. Specifically, gb(x) takes the form of a

regression tree. Let Tb represent the topology of the regression tree associated

142

https://github.com/rizbicki/UQ4ML/blob/main/notebooks/bayesian_optimization_sequence.md
https://github.com/rizbicki/UQ4ML/blob/main/notebooks/bayesian_optimization_sequence.md

Chapter 6. Capturing Epistemic Uncertainty through Bayesian and Ensemble Techniques

with gb, and let µb = {µb,1, . . . ,µb,|Tb|} be the outputs of this tree associated

with each of the |Tb| leaves of Tb. We define

gb(x) := g(x;Tb;µb) := µb,i,

where µb,i is the output of Tb associated with x.

Figure 6.6: Comparison of acquisition functions in Bayesian optimization: EI,

PI, UCB, and Random Sampling. The plot shows how performance improves

as new data is collected over 50 iterations. The dashed line represents the true

maximum of the objective function.

The BART model thus assumes that the regression function is a sum of the

outputs of each regression tree,

E[Y |x] =
B∑

b=1
gb(x) =

B∑
b=1

g(x;Tb;µb).

The parameters of the model are therefore θ = (T1,µ1, . . . ,TB ,µB ,σ). The prior

for θ is chosen such that the following conditional independences hold:

f(θ) = f(σ)
B∏

b=1
f(Tb)f(µb|Tb),

143

6.3. Bayesian Additive Regression Trees (BART)

and

f(µb|Tb) =
|Tb|∏
i=1

f(µb,i|Tb).

Each of these components is chosen as follows:

• The prior distribution f(Tj) is defined following Chipman et al. (1998).

Concretly, the probability that a node at depth d is not a leaf is given by

α(1+d)−β
, where α ∈ (0,1) and β ≥ 0 are hyperparameters. Additionally,

the prior distribution for selecting the splitting variable at each node is

uniform, as is the prior distribution for the threshold used to split that

variable.

• The prior distribution for each µb,i is assumed to be Gaussian. For details

on the selection of its hyperparameters, refer to Chipman et al. (1998).

• The prior distribution for σ2
is taken to be the inverse chi-square distri-

bution. Again, see Chipman et al. (1998) for guidance on selecting its

hyperparameter.

Chipman et al. (2012) shows how MCMC can be performed to sample from

the posterior distribution induced by this prior and model.

(a) Epistemic uncertainty around r(x) based

on the posterior distribution of h(x)|x,D
(b) Prediction sets based on the predictive dis-

tribution of Y |x,D

Figure 6.7: Bayesian Additive Regression Trees: The plot illustrates the original

data points in blue, the estimated regression line in red, and the credible/pre-

diction bands as the shaded area.

144

Chapter 6. Capturing Epistemic Uncertainty through Bayesian and Ensemble Techniques

Figure 6.7 presents a scatter plot of the data, the estimated regression line,

the 95% credible interval around r(x) from the posterior distribution f(x)|x,D

(left panel), and the 95% prediction intervals from the predictive distribution

of Y |x,D (right panel) for the same simulated example as Figure 6.3. The

model was fitted to this data using the BART package in R (Sparapani et al.,

2021); see the full code at the BART Notebook.

See Hill et al. (2020) and Tan and Roy (2019) and references therein for

extensions of this model. These extensions, for instance, allow for different

distributions for ϵ.

6.4 Monte Carlo Dropout

Monte Carlo dropout is a technique originally designed to avoid overfitting

of a neural network (Srivastava et al., 2014), but that can also be used to

measure the uncertainty around point predictions in such networks. This

section provides a succinct overview of this technique.

Recall that, in a regression context, a feed-forward neural network outputs

an estimate with the shape (Section 2.6.6)

g(x) = a ◦HH . . . ã ◦H1 · ã ◦H0 · x̃,

where x̃ = (1,x) and ã(y) = (1,a(y)). In a network with dropout, the output

(at training time) is instead given by

g(x) = a ◦HH (bH ⊙ . . . ã ◦H1 · (b1⊙ ã ◦H0 · (b0⊙ x̃))) ,

where ⊙ denotes the Hadamard product, and each bi is a vector in which

the first component is one, and the remaining ones are independent Bernoulli

random variables with some predefined parameter p. A different set of bi’s

is drawn at each training iteration. In words, dropout randomly sets the

activation function of each node to be zero with probability p. Intuitively,

dropout decreases how much a network depends on each parameter, thus

preventing overfitting. Indeed, it can be shown that it effectively performs

stochastic gradient descent on a regularized version of the loss function (Wager

et al., 2013).

145

https://github.com/rizbicki/UQ4ML/blob/main/notebooks/BART_Notebook.md

6.4. Monte Carlo Dropout

If used during prediction time, dropout induces a distribution over the

possible outputs of a fitted network. This randomness can be used to quantify

the uncertainty around the predictions. Specifically, consider a fixed network

with estimated parameters H0, . . . ,HH . Let θ denote the network parameters

that determine its output (that is, the output is a function of x and θ). The

randomness on the Bernoulli random variables in dropout bi’s induces a dis-

tribution over θ, say q(θ). It has been shown that, under some conditions, q(θ)
approximates the posterior distribution over θ given by a specific Bayesian

deep Gaussian process (Gal and Ghahramani, 2016). More precisely, q(θ) is

the distribution that has smallest Kullback-Leibler divergence to the true pos-

terior p(θ|D), where D represents the training data, among a specific family

of tractable distributions over θ. Thus, if a model for the aleatoric uncertainty,

Y |x,θ, is available, we can approximate the Bayesian predictive distribution

via

f(y|x,D)≈
∫

f(y|x,θ)q(θ)dθ.

In particular, we can effectively sample from the predictive distribution by:

(i) Sampling θ from q(θ). This can be done by using Monte Carlo dropout

on the network.

(ii) Sampling from Y |x,θ using the model for the aleatoric uncertainty.

The aleatoric uncertainty can be modeled, for example, using a Gaussian

distribution Y |x∼N(µ(x),σ2), where µ(x) is estimated by the neural network.

The variance σ2
can either be estimated as a second output of the network or

calculated separately. Alternatively, a heteroscedastic model can be used,

where the variance depends on the input, Y |x ∼ N(µ(x),σ2(x)), with both

µ(x) and σ2(x) estimated by the network.

In practice, given a sample of outputs θ1, . . . ,θB from a dropout network

after passing x through it B times, the aleatoric variance at x, defined as

Eθ∼f(θ|D) [V [Y |x,θ]], can be approximated by:

1
B

B∑
b=1

V [Y |x,θb] .

Similarly, the epistemic variance, defined as Vθ∼f(θ|D) [E [Y |x,θ]], can be esti-

146

Chapter 6. Capturing Epistemic Uncertainty through Bayesian and Ensemble Techniques

mated from the variance of the values E [Y |x,θ1] , . . . ,E [Y |x,θB]. Finally, the

aleatoric and epistemic variances can be combined using Equation 6.2.

Figure 6.8 shows Monte Carlo dropout results for a neural network re-

gression model on simulated data. The right panel combines total uncer-

tainty (epistemic and aleatoric), while the left focuses on epistemic uncertainty

around E[Y |x]. Scatter points represent observed data, the red line is the

estimated regression, and shaded regions indicate 95% uncertainty intervals.

Areas with more data have lower epistemic uncertainty. Full code is available

in the Monte Carlo Dropout Notebook.

(a) Epistemic uncertainty around the estimated

mean

(b) Total uncertainty around the predictions of

Y

Figure 6.8: Monte Carlo Dropout: The plots illustrate the model predictions

with uncertainty bands. The right plot shows total uncertainty (including

both aleatoric and epistemic), while the left plot isolates epistemic uncertainty

around the regression function. The blue points represent the original data, the

red line shows the predicted mean, and the shaded areas represent uncertainty.

See Kendall and Gal (2017) and Valdenegro-Toro and Mori (2022) for vari-

ations and further details, and Folgoc et al. (2021) for a critique of this approx-

imation.

6.5 Batch Normalization

Batch normalization, initially devised to make training of neural networks

faster and more stable (Ioffe and Szegedy, 2015), has also been discovered

147

https://github.com/rizbicki/UQ4ML/blob/main/notebooks/Monte_Carlo_Dropout_Notebook.md

6.6. Deep Ensembles

to serve as an implicit regularizer for standard network solutions (Luo et al.,

2018), akin to the effects observed with Monte Carlo dropout (Section 6.4).

Moreover, Teye et al. (2018) indicates its utility in quantifying uncertainty

surrounding point predictions within these networks. This section shows a

concise summary of the technique.

During training, batch normalization renormalizes the input of each node,

say h, according to

h̃ = h−µB

σB
,

where µB and σB represent the mean and standard deviation of the batch

size being used, B ⊂ {1, . . . ,n}. Because the batch being used during training

changes, this process induces a randomness in the output of the network.

Specifically, let θ denote the network parameters that determine its output

(that is, the output is a function of x and θ). The randomness on B induces a

distribution over θ, say q(θ). It has been shown that, under some conditions,

q(θ) approximates the posterior distribution over θ given by a specific Bayesian

process (Teye et al., 2018). More precisely, q(θ) is the distribution that has the

smallest Kullback-Leibler divergence to the true posterior p(θ|D), where D

represents the training data, among a specific family of tractable distributions

over θ. Thus, as in Monte Carlo dropout, if a model for the aleatoric uncertainty,

Y |x,θ, is available, we can approximate the Bayesian predictive distribution

via

f(y|x,D)≈
∫

f(y|x,θ)q(θ)dθ.

6.6 Deep Ensembles

Deep ensembles (Lakshminarayanan et al., 2017) are inspired by Random

Forests (Section 2.6.3). In this approach, one trains B neural networks that

model the aleatoric uncertainty f(y|x). However, instead of training these

networks on bootstrap samples of the original dataset, the full dataset is always

used. Instead, the initial weights for each network are independently selected

at random, and the dataset is randomly shuffled for each training iteration.

Moreover, the authors suggest the use of adversarial training to smooth the

estimated densities (Goodfellow et al., 2014; Szegedy et al., 2013).

148

Chapter 6. Capturing Epistemic Uncertainty through Bayesian and Ensemble Techniques

Each network gives a different estimate of f(y|x), say f̂b(y|x). The estimated

distribution that measures both the aleatoric and the epistemic uncertainty is

then defined to be the mixture

1
B

B∑
b=1

f̂b(y|x).

Hoffmann and Elster (2021) show that this corresponds to an approximation

of the Bayesian predictive density f̂(y|x,D) for a specific prior. See Rahaman

et al. (2021) for criticisms to this approach.

6.7 The Bootstrap

Confidence is what you have

before you understand the

problem.

Woody Allen

The bootstrap (Efron and Tibshirani, 1994) is a flexible tool for construct-

ing frequentist confidence sets. In the context of regression models, it can be

used to quantify epistemic uncertainty about the regression function. Specif-

ically, for a fixed x ∈ X , the goal of the bootstrap is to create an interval,

(Lx(D),Ux(D)), such that

P(Lx(D)≤ r(x)≤ Ux(D))≈ 1−α,

where D = {(X1,Y1), . . . ,(Xn,Yn)} is the training data, and r(x) is the true

regression function.

There are several variants of the bootstrap method to achieve this goal (see,

e.g., Shalizi 2013; Wasserman 2006 and references therein). A simple version,

applicable when a method for estimating r(x) is available, proceeds as follows:

1. Resampling: Generate B bootstrap samples, D∗
1,D∗

2, . . . ,D∗
B , by ran-

domly sampling with replacement from the original dataset D. Each

bootstrap sample D∗
b contains n points.

149

6.7. The Bootstrap

2. Estimate the Regression Function: For each bootstrap sample D∗
b , com-

pute the estimate r̂b(x) of the regression function using the same method

applied to the original data. This results in B estimates: r̂1(x), . . . , r̂B(x).

3. Construct Confidence Intervals: For each x, construct a confidence in-

terval for r(x) by taking the α/2 and 1−α/2 quantiles of the distribution

of r̂b(x) across the B bootstrap samples.

In addition to confidence sets, the bootstrap can also be used to create

prediction sets by resampling from the original data, as discussed in Davison

and Hinkley (1997). This allows for the capture of both aleatoric and epistemic

uncertainties. However, the bootstrap requires several assumptions to be valid,

and its performance is asymptotic in the sample size n (Hall, 1992).

Figure 6.9: Bootstrap predictions for three polynomial regression models.

The solid lines represent the mean predicted regression function, while the

shaded areas indicate 95% bootstrap confidence intervals. Wider intervals

reflect increased epistemic uncertainty, especially in areas with sparse data.

Figure 6.9 shown an application of the bootstrap procedure to construct

confidence intervals around a regression function; the code to obtain this

plot is avaiable at the Bootstrap Notebook. Three polynomial models (as in

Example 2.1), with degrees 5, 8, and 10, were fitted to a dataset containing

dense regions at the extremes of the x range and sparse data in the middle.

The solid lines represent the predicted mean function for each model, while

the shaded areas depict the 95% bootstrap confidence intervals. The varying

width of the confidence intervals across the x values illustrates the epistemic

150

https://github.com/rizbicki/UQ4ML/blob/main/notebooks/Bootstrap_Notebook.md

Chapter 6. Capturing Epistemic Uncertainty through Bayesian and Ensemble Techniques

uncertainty captured by the bootstrap – the intervals are wider in regions with

sparse data, where uncertainty is higher. Notably, the degree of uncertainty

is also influenced by the choice of model, with each polynomial producing

different levels of uncertainty.

6.8 Summary

In this chapter, we discussed several techniques for quantifying both aleatoric

and epistemic uncertainties in machine learning models.

Bayesian models offer a structured way to incorporate both types of un-

certainty through the posterior predictive distribution, f(y|x,D). We showed

that using f(y|x,D) in oracle sets is sound from a Bayesian decision-theoretic

perspective.

We explored different models that produce variations of f(y|x,D). Gaus-

sian processes provide a flexible, nonparametric approach to capturing un-

certainty in complex, nonlinear settings. BART, with its tree-based structure,

offers a more interpretable model, making it particularly useful when trans-

parency is important. Techniques like Monte Carlo Dropout and Batch Nor-

malization, initially developed to improve neural network training, repurpose

their randomness to estimate uncertainty and approximate Bayesian models.

Finally, Deep Ensembles leverage multiple neural networks with random ini-

tialization to capture model uncertainty. Finally, bootstrap methods provide a

frequentist approach to measuring epistemic uncertainty by refitting models

on variations of the original dataset.

151

6.8. Summary

152

Part II

Applications

153

Chapter 7

Photometric Redshift
Prediction

Mayan astronomer depicted in the Madrid Codex, page 34; Mexico, 15th cen-

tury.

7.1. Vera C. Rubin Observatory

To confine our attention to

terrestrial matters would be to

limit the human spirit.

Stephen Hawking

This chapter provides applications of UQ techniques to the problem of

photometric redshift estimation, a crucial task in astrophysics. Redshift, which

measures how much the wavelength of light from a galaxy has been stretched

due to the expansion of the universe, is essential for determining the distance to

galaxies and for inferring cosmological parameters. While spectroscopy pro-

vides precise redshift measurements, it is resource-intensive and impractical

for large-scale sky surveys. Consequently, photometry is used as a faster alter-

native. This technique records the radiation from astronomical objects through

approximately 5-10 broad-band filters, providing quicker measurements that

are less detailed than those obtained from spectroscopy.

In photometric redshift estimation, often referred to as the photo-z prob-

lem, the aim is to predict the redshift (y) of an object based on its observed

photometric covariates (x), using a dataset of galaxies with spectroscopically

confirmed redshifts. Due to degeneracies – where galaxies at different dis-

tances have similar photometric colors due to overlapping filter effects – and

observational noise, probability densities (f(y|x)) are better suited to describe

the relationship between x and y than traditional regression (E[Y |x]) (Almos-

allam et al., 2016; Beck et al., 2016; Benitez, 2000; Dalmasso et al., 2020b; Dey

et al., 2021; Malz and Hogg, 2022; Mandelbaum et al., 2008; Zhou et al., 2021).

In Section 7.1 we apply some of the techniques presented in the last chapters

to estimate the redshift of galaxies simulated by the photo-z collaboration from

the Vera C. Rubin Observatory. Then, in Section 7.2, we predict the redshift

from quasares observed by the Southern Photometric Local Universe Survey.

7.1 Vera C. Rubin Observatory

In this section, based on Schmidt et al. (2020), we leverage data generated

from the Rubin Observatory’s Legacy Survey of Space and Time (LSST)-Dark

156

Chapter 7. Photometric Redshift Prediction

Energy Science Collaboration photo-z data challenge to conduct a comparative

analysis of f(y|x) estimates.

For our calibration set, we use the "training set" detailed in Schmidt et

al. (2020), comprising approximately 44,000 instances. The Buzzard-highres-

v1.0 simulation, based on the Chinchilla-400 N-body dark matter simulation,

provides a mock catalogue of 238 million galaxies. Although the redshift range

extends from 0 to 8.7, a color correction issue limits it to 0-2.0. The dataset,

designed to simulate LSST observations, includes photometry in six bands

(ugrizy) with added Gaussian noise. Our test set contains 399,356 galaxies.

Table 7.1 provides an overview of the estimators for f(y|x) that were com-

pared. In this table, ML refers to estimators that rely on the training data,

while template refers to methods that match observed photometry with a set of

idealized photometric data for various galaxy types across different redshifts.

Template methods are grounded in the underlying physics of the problem,

while ML methods solely use the available training data.

Table 7.1: List of conditional density estimators applied to the LSST-DESC

Photo-z Data Challenge.

Code Type Paper Website
BPz template Benitez (2000) http://www.stsci.edu/~dcoe/BPZ/

EAZY template Brammer et al. (2008) https://github.com/gbrammer/eazy-photoz

LePhare template Arnouts et al. (1999) http://www.cfht.hawaii.edu/~arnouts/lephare.html

ANNz2 ML Sadeh et al. (2016) https://github.com/IftachSadeh/ANNZ

Delight ML/template Leistedt and Hogg (2017) https://github.com/ixkael/Delight

FlexZBoost ML Izbicki and Lee (2017)

https://github.com/tpospisi/flexcode;

https://github.com/lee-group-cmu/FlexCode

GPz ML Almosallam et al. (2016) https://github.com/OxfordML/GPz

METAPhoR ML Cavuoti et al. (2017) http://dame.dsf.unina.it

CMNN ML Graham et al. (2018) -

SkyNet ML Graff et al. (2014) http://ccpforge.cse.rl.ac.uk/gf/project/skynet/

TPZ ML Carrasco Kind and Brunner (2013) https://github.com/mgckind/MLZ

trainZ N/A

trainZ provides a simple estimate of the marginal distribution of redshifts,

whereas FlexZBoost represents a specialized adaptation of FlexCode (Section

3.4) designed for this problem. In particular, we employ xgboost (Chen and

Guestrin, 2016) as the regression method to estimate the expansion coefficients,

leveraging its scalability for large datasets. Additionally, we introduce a tuning

parameter to sharpen the density estimates f̂(y|x), modifying them as f̃(y|x)∝
f̂(y|x)α

. FlexCode is particularly interesting for this application because it

enables lossless compression of photo-z estimates. Specifically, f̃(y|x) can be

reconstructed at any resolution using only the first 35 coefficients of a Fourier

157

http://www.stsci.edu/~dcoe/BPZ/
https://github.com/gbrammer/eazy-photoz
http://www.cfht.hawaii.edu/~arnouts/lephare.html
https://github.com/IftachSadeh/ANNZ
https://github.com/ixkael/Delight
https://github.com/tpospisi/flexcode
https://github.com/lee-group-cmu/FlexCode
https://github.com/OxfordML/GPz
http://dame.dsf.unina.it
http://ccpforge.cse.rl.ac.uk/gf/project/skynet/
https://github.com/mgckind/MLZ

7.1. Vera C. Rubin Observatory

basis ϕi(y)i for this data. This feature sets it apart from most other estimators,

which rely on lossy compression methods, such as binning the redshift space,

to store the estimated distributions in photometric dataset catalogs that are

used in downstream analyses.

Table 7.2 presents a comparison of the performance of various estimators

of f(y|x) using the L2
loss metric (Section 3.1.1). FlexZBoost achieves the

lowest L2
loss among the methods evaluated, indicating better performance.

As anticipated, trainZ exhibits significantly poorer results.

Table 7.2: Comparison with methods benchmarked in the LSST-DESC Photo-z

Data Challenge (Schmidt et al., 2020). In terms of L2 loss, FlexZBoost has the

best performance.

Photo-z Algorithm L2
Loss

ANNz2 -6.88

BPZ -7.82

Delight -8.33

EAZY -7.07

FlexZBoost -10.60
GPz -9.93

LePhare -1.66

METAPhoR -6.28

CMNN -10.43

SkyNet -7.89

TPZ -9.55

trainZ -0.83

Figure 7.1 shows a comparison of goodness-of-fit diagnostics for the es-

timated conditional density functions f(y|x) across different models. Each

pair of panels provides insights into model calibration and predictive perfor-

mance. The top panel of each pair combines a Quantile-Quantile (QQ) plot

(in red) and a histogram of PIT values (in blue). Although trainZ is a naive

estimate lacking specific information about individual redshifts, it performs

well according to the figure’s metrics, which are widely used in the photo-z

literature. This behavior is explained by Theorem 5, as these metrics assess

only marginal coverage, and confirms that looking at goodness-of-fit only is

not a good strategy to compare estimators. FlexZBoost also yields descent di-

agnostics, but in some cases, the PIT values are exactly zero or one, suggesting

158

Chapter 7. Photometric Redshift Prediction

that the estimated densities are overly narrow in these instances.

Figure 7.1: Goodness-of-fit for all f(y|x) estimates. The top panel shows

the Quantile-Quantile (QQ) plot (red) and PIT histogram (blue). Ideally, the

QQ plot aligns with the dashed diagonal, and the PIT histogram matches the

uniform distribution (thin black line). The bottom panel highlights deviations

of QQ quantiles from the diagonal. Adapted from Schmidt et al. (2020).

7.2 Southern Photometric Local Universe Survey
(S-PLUS)

S-PLUS (Southern Photometric Local Universe Survey; Mendes de Oliveira

et al. 2019) is an extensive sky survey aiming to cover approximately 9300

square degrees of the Southern Sky using an optical system composed of

twelve filters. These filters include five broad bands (ugriz), similar to those

159

7.2. Southern Photometric Local Universe Survey (S-PLUS)

used in the Sloan Digital Sky Survey (SDSS), as well as seven narrow bands. In

addition to its intrinsic data, S-PLUS integrates photometric data from other

surveys such as GALEX and WISE, extending the wavelength range and further

improving photometric redshift predictions.

In this section, based on Nakazono et al. (2024), we evaluate the value of

adding narrow bands to the photometric set of covariates in the prediction of

quasar redshifts. Specifically, we compare two sets of features:

• broad+GALEX+WISE: u−r, g−r, r−i, r−z, FUV−r, NUV−r, r−W1, r−W2

• broad+GALEX+WISE+narrow: the above eight broad-band colors ex-

tended with the same seven narrow-band colors as in the first case.

We use 33,151 labeled quasars. Further details about the analysis can be found

in Nakazono et al. (2024).

We estimate the distribution over redshifts for each quasar using FlexCode

(Section 3.4) and a Bayesian Mixture Density Network (BMDN). The latter inte-

grates a Mixture Density Network (Section 3.5) with Bayesian Neural Networks

(Bishop, 1997), estimating both epistemic and aleatoric uncertainties.

Figure 7.2: Average feature importances for FlexCoDE in the SDSS data.

Figure 7.2 highlights FlexCode’s top features, r−W1 and u−r, which cap

the Spectral Energy Distribution (SED) shape across broad wavelengths. The

L2 loss values for FlexCode are -2.88 (with narrow bands) and -1.32 (without

160

Chapter 7. Photometric Redshift Prediction

(a) (b)

(c) (d)

Figure 7.3: PIT distribution for: (a) FlexCode without narrow bands; (b) BMDN

without narrow bands; (c) FlexCode with narrow bands; and (d) BMDN with

narrow bands. Calibration is indicated by closeness to the uniform distribution

(red line).

narrow bands). For BMDN, these values are -2.85 (with narrow bands) and

-1.46 (without narrow bands). Thus, narrow bands improve both models.

Moreover, the FlexCode model trained with narrow bands produced the best

photo-z’s PDF, as evidenced by having the lowest L2 loss.

Figure 7.3 presents PIT histograms (Section 4.1) for BMDN and FlexCode

models, trained with and without narrow bands, showing under-dispersed

PDFs that suggest room for improvement with alternative methods. Figure

7.4 compares estimated PDFs, highlighting that for zspec < 3.5 and r < 21.3,

primary peaks align with true redshifts, reflecting the spectroscopic sample.

FlexCode yields sharper PDFs with narrow bands, indicating more precise

estimates, while BMDN shows improvements for specific cases. For z > 5,

redshifts are underestimated due to SDSS pipeline errors. SDSS J022737.70-

011927.0 exemplifies color-redshift degeneracy, with FlexCode assigning higher

probability to the true redshift than BMDN.

161

7.2. Southern Photometric Local Universe Survey (S-PLUS)

Figure 7.4: Redshift density estimates from BMDN (top) and FlexCode (bot-

tom) for 12 quasars. Dashed lines show spectroscopic redshifts. Green curves

use broad+GALEX+WISE; pink include narrow bands.

162

Chapter 8

Disease Surveillance:
Dengue and COVID-19

The Plague of Flies. James Tissot, circa 1896-1902, Jewish Museum, New York.

8.1. Dengue Nowcasting

An ounce of prevention is worth a

pound of cure.

Benjamin Franklin

8.1 Dengue Nowcasting

Dengue remains a significant public health challenge, especially in tropical

regions where the Aedes aegypti mosquito is common. The disease affects

millions each year, with symptoms that can range from mild to severe. Since

there is no specific treatment for dengue, predicting and managing outbreaks

quickly is crucial to reduce its impact on communities (Lancet, 2024).

Traditional dengue surveillance systems are essential but often suffer from

delays in reporting, which can slow down the response to outbreaks (Bastos

et al., 2019). These delays make it harder for health authorities to act quickly,

which is why nowcasting – predicting the current situation using real-time data

– is so important. Nowcasting helps provide the most up-to-date information,

allowing for better decision-making and more effective control measures.

However, prediction alone is insufficient. Equally important is quanti-

fying the uncertainty in these predictions. This chapter demonstrates how

Dengue-tracker (https://diseasesurveillance.github.io/) incorporates uncer-

tainty quantification into dengue nowcasting (Xiao et al., 2024). By including

UQ, the system not only provides estimates of dengue cases but also prediction

bands that indicate the possible range of outcomes. These prediction bands are

crucial for helping health authorities assess risks and make informed decisions

(Codeço et al., 2016).

8.1.1 Prediction Model

The core idea behind Dengue-tracker is that during a dengue outbreak,

the number of searches for dengue-related terms in search engines increases.

Thus, we use Google Trends data as covariates to estimate the actual dengue

cases, even when official reports are delayed.

164

https://diseasesurveillance.github.io/

Chapter 8. Disease Surveillance: Dengue and COVID-19

To model this relationship, we selected specific search terms that are highly

correlated with dengue outbreaks. These terms are “Dengue" and “Sintomas

Dengue" (Dengue Symptoms). The choice of these terms was guided by his-

torical analysis, where we observed consistent spikes in search volumes corre-

sponding with reported dengue cases.

Our nowcasting model can be formally described as follows. Let Yl,t rep-

resent the count of new dengue cases in location l during week t. Assume we

are currently in week t = t0. Due to reporting delays, Yl,t may be unreliable

for weeks close to t0. To correct these estimates, we assume that Yl,t is reliable

for t ≤ t0 −K (where we set K = 4 in our case, based on empirical evidence

that suggests that most reporting delays typically do not exceed four weeks in

most locations).

To predict Yl,t for recent weeks, we utilize Google Trends search data,

denoted as Xk,l,t, where Xk,l,t represents the volume of searches on Google

Trends for term k in location l and week t. Our model is specified as

Yl,t = β0,l +
K∑

k=1
βk,l ·Xk,l,t + ϵl,t,

where ϵl,t is an error term with zero mean and zero variance. This linear model

poses that dengue cases in a particular location and week are approximately

proportional to the search activity for relevant terms.

To account for regional variations, we fit the model independently for each

location l, using all available data up to t≤ t0−K. We employ standard least

squares estimation (Equation 3.4) to obtain the coefficients β̂0,l and β̂k,l, which

are then used to predict Yl,t for more recent weeks:

Yl,t = β̂0,l +
K∑

k=1
β̂k,l ·Xk,l,t.

8.1.2 Uncertainty Quantification for the Number of Cases

To account for the uncertainty in the predictions provided by the Dengue-

tracker, we evaluate three different methods for building 90% prediction inter-

vals:

165

8.1. Dengue Nowcasting

• Linear Model: We use the standard prediction intervals derived from

the Gaussian linear model used to generate the point predictions. These

intervals are detailed in Section 5.3.2.

• Linear Quantile Regression: We apply linear quantile regression (Sec-

tion 3.9) to model the conditional quantiles of Yt given Xt. This method

estimates the α/2 and 1− α/2 quantiles of f(yt|xt) using all available

data up to t0−K.

• Conformalized Quantile Regression (CQR): We enhance the quantile

regression approach by applying split-Conformalized Quantile Regres-

sion (CQR; Romano et al. 2019). This method uses the conformal score

h(x,y) = max{q̂α/2(x)− y,y− q̂1−α/2(x)}, where q̂α/2 and q̂1−α/2 are the

estimated quantiles. Although CQR is primarily designed for i.i.d. data,

split-conformal has shown robust performance in practice, provided that

f(yt|xt) is stationary and exhibits weak dependence (Oliveira et al., 2024).

8.1.3 Results

The official data used in this analysis comes from the Notifiable Diseases In-

formation System (SINAN; Sistema de Informação de Agravos de Notificação

(SINAN) 2024), a critical component of Brazil’s public health infrastructure

managed by the Brazilian Ministry of Health. SINAN collects, processes, and

disseminates data on notifiable diseases, including dengue, across the country.

For our analysis, we specifically model state-level data to capture regional vari-

ations in dengue incidence. While SINAN provides a comprehensive dataset

that is crucial for monitoring disease trends and guiding public health re-

sponses, the inherent delays in reporting and data entry can create a lag in

the availability of real-time information. This lag highlights the importance of

nowcasting techniques to supplement and enhance the insights derived from

SINAN data.

Figure 8.1 presents the estimated curves for dengue cases in three Brazilian

states: Rio de Janeiro, Pernambuco and São Paulo. We fit a different model

independently for each state. Each plot includes the 90% prediction bands

obtained via CQR alongside the officially reported case numbers. We compare

our approach to InfoDengue, which uses a Bayesian hierarchical model to

166

Chapter 8. Disease Surveillance: Dengue and COVID-19

nowcast events by analyzing temporal, spatial, and delay-related variability by

evaluating weekly updating patterns (Codeço et al., 2016). The results show

that the model provides accurate, timely estimates of dengue cases.

Table 8.1: Mean and standard error (in parentheses) of coverage probabilities

for different models across Brazilian states. Nominal coverage is 90%.

State Linear Model Linear QR Conformal

AC 0.5 (<0.001) 0.875 (0.006) 0.875 (0.006)

AL 0 (<0.001) 1 (<0.001) 1 (<0.001)

AM 0.751 (0.012) 0.875 (0.006) 0.875 (0.006)

AP 0.25 (<0.001) 0.875 (0.006) 0.875 (0.006)

BA 0.625 (0.006) 1 (<0.001) 1 (<0.001)

BR 0 (<0.001) 1 (<0.001) 1 (<0.001)

CE 0.125 (0.006) 0.125 (0.006) 0.125 (0.006)

DF 0.249 (0.012) 1 (<0.001) 1 (<0.001)

ES 0.125 (0.006) 0.5 (<0.001) 0.5 (<0.001)

GO 0.625 (0.006) 0.75 (<0.001) 0.75 (<0.001)

MA 0.75 (<0.001) 1 (<0.001) 1 (<0.001)

MG 0.625 (0.006) 1 (<0.001) 1 (<0.001)

MS 0.375 (0.006) 0.75 (<0.001) 0.75 (<0.001)

MT 0.375 (0.006) 1 (<0.001) 1 (<0.001)

PA 0.25 (<0.001) 0.875 (0.006) 0.875 (0.006)

PB 0.125 (0.006) 1 (<0.001) 1 (<0.001)

PE 0.125 (0.006) 0.25 (<0.001) 0.25 (<0.001)

PI 0.125 (0.006) 1 (<0.001) 1 (<0.001)

PR 0.875 (0.006) 1 (<0.001) 1 (<0.001)

RJ 0.125 (0.006) 1 (<0.001) 1 (<0.001)

RN 0 (<0.001) 0.25 (<0.001) 0.25 (<0.001)

RO 0.125 (0.006) 1 (<0.001) 1 (<0.001)

RR 0.75 (<0.001) 0.75 (<0.001) 0.75 (<0.001)

RS 0.125 (0.006) 1 (<0.001) 1 (<0.001)

SC 0.625 (0.006) 1 (<0.001) 1 (<0.001)

SE 0.375 (0.006) 1 (<0.001) 1 (<0.001)

SP 0 (<0.001) 1 (<0.001) 1 (<0.001)

TO 1 (<0.001) 1 (<0.001) 1 (<0.001)

Table 8.1 presents the mean and standard error of these coverage prob-

abilities for the three UQ models. The conformal model consistently shows

coverage probabilities closer to the nominal 90% value across most states com-

pared to the standard linear model. However, it does not deviate much from

167

8.1. Dengue Nowcasting

Figure 8.1: Estimated dengue case curves for Rio de Janeiro, Pernambuco and

São Paulo. The plots feature 90% prediction bands obtained via CQR and the

official reported case numbers, illustrating the model’s accuracy in estimating

dengue cases without delays.

168

Chapter 8. Disease Surveillance: Dengue and COVID-19

the quantile regression approach, which already has good coverage. Indeed,

in all states the correction factor from CQR was t < 0.001, indicating that the

prediction sets from CQR and quantile regression are almost identical.

8.2 COVID-19 Hospitalizations and Vaccination Im-
pact

The COVID-19 pandemic overwhelmed healthcare systems globally due

to a surge in hospitalizations. Vaccination campaigns, initiated in late 2020,

significantly reduced severe cases and hospital admissions. Understanding

the scale of this reduction helps quantify the impact of vaccinations on public

health. In this section, we use methods similar to those applied in the dengue

nowcasting section, to estimate the number of hospitalizations prevented by

COVID-19 vaccinations in São Paulo, Brazil, by May 17, 2021.

To carry out this estimation, we used data from the Brazilian Ministry of

Health’s SIVEP-Gripe database, which tracks severe acute respiratory illness

(SARI) cases, including those caused by COVID-19. By constructing a coun-

terfactual model, we aim to predict how many hospitalizations would have

occurred in the elderly population (aged 65 and above) if they had not been

vaccinated.

8.2.1 Prediction Model for Avoided Hospitalizations

To assess the reduction in hospitalizations due to COVID-19 vaccination,

we develop a counterfactual model to estimate what would have occurred

if vaccination had not taken place. Specifically, we focused on predicting

hospitalizations among the elderly (aged 65 and above) in São Paulo without

the vaccine. We follow Izbicki et al. (2021) and use synthetic control methods

(Abadie et al., 2010) by modelling the counterfactual using hospitalization data

from younger age groups.

Denote by Yt,f the number of hospitalized COVID-19 patients in age group

f (f = 1, . . . ,F) on day t (t = 1, . . . ,T). The potential outcomes, representing

the hypothetical results of different interventions (either receiving the vaccine

or not), are denoted by Yt,f (v), where v = 1 corresponds to the number of

169

8.2. COVID-19 Hospitalizations and Vaccination Impact

hospitalizations if that group had been offered the vaccine at time t, and v = 0
corresponds to this number if the group had not been offered the vaccine. Note

that only one of Yt,f (0) or Yt,f (1) is observed, never both.

We assume that the intervention (the vaccination) for the group of interest

(denoted by f = 1) took place at time t0, while the other groups, f = 2, . . . ,F

were not offered the vaccine until the study concluded.

Let Y−1
t (v) = (Yt,2(v), . . . ,Yt,F (v)). These will be our control groups, as

they had not been offered the vaccine at the time this data was collected. In

this analysis we assume that

Yt,f (0) = β0 +βtY−1
t (0) + ϵt,f , t = 1, . . . ,T (8.1)

where

(
ϵt,f

)
t,f

i.i.d.∼ N(0,σ2). Since Yt,f = Yt,f (0) for all f and for t < t0 (no

group was offered the vaccine before time t0), Equation 8.1 implies that

Yt,1 = β0 +βtY−1
t + ϵt,f , t = 1, . . . ,T0− 1

which suggests that we can estimate the model parameters (β0,β, and σ2
) via

ordinary least squares regression using the data collected up to t0.

Furthermore, since Yt,f = Yt,f (0) for all t≥ T0 and f > 1 (the unvaccinated

groups), we observe Yt,f (1) for t ≥ T0 and f > 1, allowing us to estimate the

counterfactual for group 1 as:

Ŷt,1(0) := β̂0 + β̂tY−1
t (0), t = T0, . . . ,T.

Finally, as we observe Yt,1(1) for t ≥ t0, we can then estimate the effect of the

intervention at each point in time by computing Yt,1(1)− Ŷt,1(0).
This counterfactual analysis relies on three key assumptions:

• If the vaccination campaign had not begun, the relationship between

hospitalizations in the elderly and younger groups would have remained

consistent after February 8, as it was before that date;

• Vaccination did not have a significant impact on the younger group prior

to May 17;

• The linear model provides a reasonable approximation.

170

Chapter 8. Disease Surveillance: Dengue and COVID-19

For this analysis, we used the population aged 55-62 as the sole control

group, as they had not been vaccinated during the study period and exhibited

similar behavioral patterns to the elderly. Moreover, we take t0 to be February

8, 2021, which is when the vaccination campaign started in Brazil.

To quantify uncertainty, we constructed 90% prediction intervals for the

counterfactual hospitalizations using linear regression, quantile regression,

and conformalized quantile regression, as described in Section 8.1.2.

8.2.2 Results

Figure 8.2 shows the observed number of hospitalizations, the counter-

factual curve predicting hospitalizations if vaccination had not started, and

the 90% prediction intervals for the counterfactual model, derived using three

uncertainty quantification methods. The vertical lines indicate the start of

vaccination for different age groups. The observed data consistently falls be-

low the counterfactual predictions, suggesting that the vaccination campaign

significantly reduced hospitalizations. Moreover, all UQ methods yield simi-

lar prediction regions. A closer inspect shows that the correction factor from

CQR was t < 0.001, indicating that the prediction sets from CQR and quantile

regression are almost identical.

The most pronounced difference between observed and counterfactual hos-

pitalization rates occurred on May 17, 2021, with a reduction of approximately

60.0% (95% CI: 57.1%, 62.2% for the linear prediction sets; similar results were

obtained with other methods). By analyzing the area under the curves, we es-

timate that vaccination prevented around 18,000 hospitalizations in São Paulo

by that date. Given the 45% mortality rate for hospitalized individuals over 65

years old with Sars Covid-19 in the region, this likely saved about 8,100 lives.

Additionally, considering hospitalization costs estimated in Miethke-Morais

et al. (2020), approximately US$220 million was saved – enough to cover the

purchase of 22 million COVID-19 vaccine doses at US$10 per dose.

171

8.2. COVID-19 Hospitalizations and Vaccination Impact

Figure 8.2: Number of hospitalizations due to SARI-COVID in elderly patients

(dark green), fitted pre-vaccination model (blue) and estimated counterfactual

curve for the setting without vaccines (red). The plot compared various meth-

ods for obtaining 90% prediction bands.

172

Chapter 9

Likelihood-Free Inference
(LFI)

Las Meninas. Diego Velázquez, 1656, Museo del Prado, Madrid.

.

Truth is much too complicated to

allow anything but

approximations.

John von Neumann

In many statistical inference problems within the sciences, establishing the

relationship between the parameters of interest and observable data is often

complicated. However, it is often feasible to create computational forward

models that simulate realistic data. This models take the parameters values θ

as inputs, and output observable data x from that model at θ. Examples of this

occur in genetics (Beaumont, 2010; Estoup et al., 2012), astronomy (Cameron

and Pettitt, 2012; Ho et al., 2019; Weyant et al., 2013), high-energy physics

(Kieseler et al., 2022), and many other science fields. In such scenarios, the

complexity of the data generation process often hinders the derivation of an

analytically precise form for the likelihood function. Thus, one cannot use

standard Bayesian or frequentist tools as no tractable form for the posterior

distribution or the likelihood function is available.

These challenges have sparked a recent surge in interest in "likelihood-

free inference" methods, often called Simulation-Based Inference (SBI), or

Simulator-Based Inference. This category includes approaches such as "Ap-

proximate Bayesian Computation" (ABC) (Marin et al., 2012; Marin et al., 2016),

amortized likelihood estimators (Fasiolo et al., 2018; Gutmann and Corander,

2016; Izbicki et al., 2014; Järvenpää et al., 2021; Lueckmann et al., 2019; Papa-

makarios et al., 2019; Picchini et al., 2020; Wood, 2010), and amortized posterior

estimators (Greenberg et al., 2019a; Lueckmann et al., 2017; Papamakarios and

Murray, 2016). See Cranmer et al. (2020) for an overview.

We begin by describing the approach introduced by Izbicki et al. (2019),

which leverages conditional density estimators (CDEs) to estimate posterior

distributions (Section 9.1). This discussion highlights the utility of this ap-

proach and outlines the necessary adaptations for naive CDEs. While the

emphasis is on FlexCode, the concepts and methods discussed are broadly

applicable to any CDE. Then, we discuss the LF2I (Likelihood-Free Frequentist

Inference) framework introduced by Dalmasso et al. (2020a) and Dalmasso

174

Chapter 9. Likelihood-Free Inference (LFI)

et al. (2024) (Section 9.3).

In this chapter, we assume we have a parametric model Fθ, θ ∈ Θ, that

models observable data X ∈ X , that is, X ∼ Fθ. Our goal is to recover θ

that generated the true observed data xo. We assume we are able to generate

from Fθ for any given θ, even if the likelihood function induced by Fθ is not

analytically tractable. We assume Θ is continuous, even though several of the

methods discussed here can be used if it is discrete.

9.1 Approximate Bayesian Computation via Condi-
tional Density Estimation (ABC-CDE)

Given a prior distribution over Θ, f(θ), the posterior distribution f(θ|x) is

simply the conditional density of θ on x. Examining LFI through a conditional

density estimation framework provides a systematic approach to tackle the

following three challenges:

(i) how to efficiently estimate the posterior density f(θ|xo), where xo is

the observed sample; in particular, in settings with complex, high-

dimensional data and costly simulations,

(ii) selecting appropriate tuning parameters and evaluating the performance

of ABC and related methods solely based on simulations and observed

data; that is, without knowing the true posterior distribution, and

(iii) how to best choose summary statistics for ABC and related methods

when given a very large number of candidate summary statistics.

9.1.1 Estimating the Posterior Density via CDE

One way to estimate f(θ|xo) via CDE methods is to generate an i.i.d. sample

T = {(θi,xi)}by sampling θ ∼ f(θ) and then x∼ f(x|θ) for each pair. Applying

the chosen CDE method to T yields an estimated density f̂(θ|x). However,

this naive approach may yield suboptimal results because some x values are

distant from the observed data xo. In ABC applications, the focus is often

solely on estimating f(θ|x) for xo, not all possible x.

175

9.1. Approximate Bayesian Computation via Conditional Density Estimation (ABC-CDE)

In these cases, one can instead estimate f(θ|x) by training on a set T
comprising samples x near xo. This training set is created by using a basic

ABC rejection sampling algorithm (see Algorithm 1) with a fixed distance

function d(x,xo) (possibly based on summary statistics) and tolerance level ϵ.

Algorithm 1: Training set for CDE via Rejection ABC

Input: Tolerance level ϵ, number of desired samples B, distance function d,

sample x0
Output: Training set T which approximates the joint distribution of (θ,X) in

a neighborhood of x0
T ← {};
while |T |< B do

Sample θ ∼ f(θ);
Sample x∼ f(x|θ);
if d(x,x0) < ϵ then
T ← T ∪{(θ,x)};

end
end
return T ;

We use our conditional density estimator on the new training set T and

evaluate it at x = xo. This acts as an ABC post-processing step (Marin et

al., 2012): the initial ABC posterior approximation comes from the sample

θ1, . . . ,θB (approximating f(θ|d(X,xo) < ϵ)). We then refine this by estimating

the conditional density at x = xo.

In what follows, we assume for simplicity that we are interested in esti-

mating the posterior distribution of a single parameter θ ∈ R, even if there are

several parameters in the problem.
1

9.1.2 Method Selection: Comparing Different Estimators of
the Posterior

Surrogate Loss. Ultimately, we need to be able to decide which approach

is best for approximating f(θ|xo) without knowledge of the true posterior.

1
Most inference problems can be expressed as the computation of unidimensional quantities.

Say one is interested in estimating m functions of parameters of the model θ, g1, . . . ,gm. One

can then (i) use ABC to obtain a single simulation set T = {(θ1,x1), . . . ,(θB ,xB)} (ii) for each

function gi, compute T gi = {(gi(θ1),x1), . . . ,(gi(θB),xB)}, and (iii) fit a (univariate) conditional

density estimator to T gi to estimate f(gi(θ)|xo).

176

Chapter 9. Likelihood-Free Inference (LFI)

Ideally, we seek an estimator f̂(θ|xo) minimizing the L2 loss at xo:

Lxo(f̂ ,f) =
∫

(f̂(θ|xo)− f(θ|xo))2dθ. (9.1)

However, since Lxo relies on the true f(θ|xo), which is unknown, method

selection becomes challenging. To address this, we instead use a surrogate loss

function:

Lϵ
xo

(f̂ ,f) =
∫ ∫

(f̂(θ|x)− f(θ|x))2 f(x)I(d(x,xo) < ϵ)
P(d(X,xo) < ϵ) dθdx,

This surrogate loss ensures a close fit within an ϵ-neighborhood of xo. The

denominatorP(d(X,xo) < ϵ) is the constant that makes
f(x)I(d(x,xo)<ϵ)
P(d(X,xo)<ϵ) a proper

density in x.

The advantage of the above definition is that we can directly estimate
Lϵ

xo
(f̂ ,f) from the ABC posterior sample. Indeed, Lϵ

xo
(f̂ ,f) can be written

as

EX′

[∫
f̂2(θ|X′)dθ

]
− 2E(θ′,X′)

[
f̂(θ′|X′)

]
+ Kf , (9.2)

where (θ′,X′) is a random vector with distribution induced by a sample gen-

erated according to the ABC rejection procedure in Algorithm 1; and Kf is a

constant that does not depend on the estimator f̂(θ|xo). Thus, given a sample

of size B′
of the ABC algorithm, (θ′

1,x′
1), . . . ,(θ′

B ,x′
B), we can estimate Lϵ

xo
(f̂ ,f)

(up to the constant Kf) via

L̂ϵ
xo

(f̂ ,f) = 1
B′

B′∑
k=1

∫
f̂2(θ|x′

k)dθ− 2 1
B′

B′∑
k=1

f̂(θ′
k|x

′
k). (9.3)

When given a set of estimators F = {f̂1, . . . , f̂m}, we select the method with

the smallest estimated surrogate loss,

f̂ := argmin
f̂∈F

L̂ϵ
xo

(f̂ ,f).

Next, we investigate the conditions under which the estimated surrogate

loss is close to the true loss; the proofs for all results can be found in Izbicki

177

9.1. Approximate Bayesian Computation via Conditional Density Estimation (ABC-CDE)

et al. (2019).

The following theorem states that, if (f̂(θ|x)−f(θ|x))2
is a smooth function

of x, then the (exact) surrogate loss Lϵ
xo

is close to Lxo for small values of ϵ.

Theorem 14. Assume that, for every θ ∈ Θ, gθ(x) := (f̂(θ|x)− f(θ|x))2 satisfies
the Hölder condition of order β with a constant Kθ

2 such that KH :=
∫

Kθdθ <∞.
Then |Lϵ

xo
(f̂ ,f)−Lxo(f̂ ,f)| ≤KHϵβ = O(ϵβ).

The next theorem shows that the estimator L̂ϵ
xo

in Equation 9.3 does indeed

converge to the true loss Lxo(f̂ ,f).

Theorem 15. Let Kf be as in Equation 9.2. Under the assumptions of Theorem 14,
|L̂ϵ

xo
(f̂ ,f) + Kf −Lxo(f̂ ,f)|= O(ϵβ) + OP (1/

√
B′).

Under some additional conditions, it is also possible to guarantee that not

only the estimated surrogate loss is close to the true loss, but that the result

holds uniformly for a finite class of estimators of the posterior distribution.

This is formally stated in the following theorem.

Theorem 16. Let F = {f̂1, . . . , f̂m} be a set of estimators of f(θ|xo). Assume there
exists M such that |f̂i(θ|x)| ≤M for every x, θ, and i = 1, . . . ,m.3 Moreover, assume
that for every θ ∈ Θ, gi,θ(x) := (f̂i(θ|x)− f(θ|x))2 satisfies the Hölder condition of
order β with constants Kθ such that KH :=

∫
Kθdθ <∞. Then, for every ν > 0,

P

(
max
f̂∈F
|L̂ϵ

xo
(f̂ ,f) + Kf −Lxo(f̂ ,f)| ≥Kϵϵ

β + ν

)
≤ 2me

− B′ν2
2(M2+2M)2 .

Finally, the next corollary shows that the procedure we propose in this

section, with high probability, picks an estimate of the posterior density that

has a true loss that is close to the true loss of the best method in F .

Corollary 2. Let f̂∗ := argmin
f̂∈F L̂ϵ

xo
(f̂ ,f) be the best estimator inF according to

the estimated surrogate loss, and let f∗ = argmin
f̂∈F Lxo(f̂ ,f) be the best estimator

in F according to the true loss. Then, under the assumptions from Theorem 16, with

probability at least 1− 2me
− B′ν2

2(M2+2M)2 , Lxo(f̂∗,f)≤ Lxo(f∗,f) + 2(KHϵβ + ν).
2
That is, there exists a constant Kθ such that for every x,y ∈ Rd |gθ(x) − gθ(y)| ≤

Kθ(d(x,y))β
.

3
Such assumptions hold if the f̂i’s are obtained via FlexCode with bounded basis functions

(e.g., Fourier basis) or a kernel density estimator on the ABC samples.

178

Chapter 9. Likelihood-Free Inference (LFI)

9.1.3 Summary Statistics Selection

In a standard ABC framework, the variable x does not represent the raw

data but instead consists of many summary statistics. Using all these statistics

together can be difficult, especially when some of them provide little useful

information about the model parameters (Blum, 2010).

We can use FlexCode (Section 3.4) as a method for either (i) directly estimat-

ing f(θ|xo) in scenarios involving a large number of summary statistics, or (ii)

assigning an importance measure to each summary statistic. This measure can

then be employed for variable selection in Approximate Bayesian Computation

(ABC) and related procedures.

Two versions of FlexCode are especially useful for these purposes: FlexCode-

SAM
4

and FlexCode-RF
5
. These versions of FlexCode can adapt dynami-

cally to the number of relevant covariates. As a result, both FlexCode-SAM

and FlexCode-RF can automatically identify the important summary statistics

needed to estimate the posterior distribution of θ. This removes the need for

manual pre-selection of summary statistics, as FlexCode-SAM and FlexCode-

RF automatically discard irrelevant covariates.

In a broader context, FlexCode offers a tool for calculating an impor-

tance measure for summary statistics, applicable not only within the FlexCode

framework but also in other procedures. In the context of LFI, one can infer the

relevance of the j-th summary statistic in posterior estimation from its relevance

in estimating the I first regression functions in FlexCode (recall Section 3.4.2)

– even if we do not use FlexCode for estimating the posterior using the tech-

nique discussed in Equation 3.9. We can use these values to select variables

for estimating f(θ|xo) via other ABC methods. For example, one approach is

to choose all summary statistics such that uj > t, where the threshold value t

is defined by the user.

4
FlexCode with expansion coefficients estimated through Sparse Additive Models (Ravikumar

et al., 2009).

5
FlexCode with expansion coefficients estimated via Random Forests.

179

9.2. Examples

9.2 Examples

9.2.1 Examples with Known Posteriors

We begin with examples featuring well-known and computable posterior

distributions:

1. Mean of Gaussian with Known Variance: X1, . . . ,X20|µ
iid∼ N (µ,1),

µ ∼ N (0,σ2
0). Experiments are repeated for σ0 in a grid of ten values

from 0.5 to 100.

2. Precision of Gaussian with Unknown Precision: X1, . . . ,X20|(µ,τ) iid∼
N (µ,1/τ), (µ,τ) ∼ Normal-Gamma(0,1,α0,β0). Experiments are con-

ducted with α0 and β0 to ensure E[τ] = 1 and

√
V[τ] spans a grid of ten

values from 0.1 to 5.

In these examples, observed data xo are drawn from a N(0,1) distribution.

We run each experiment 200 times, that is, with 200 different values of xo.

The training set T , which is used to build conditional density estimators, is

constructed according to Algorithm 1 with B = 10,000 and a tolerance level

ϵ that corresponds to an acceptance rate of 1%. For the distance function

d(x,xo), we choose the Euclidean distance between minimal sufficient statistics

normalized to have mean zero and variance 1; these statistics are x̄ for scenario

1 and (x̄,s) for scenario 2.

We compare the following methods:

• ABC: Utilizing the rejection ABC method with minimal sufficient statis-

tics. This involves applying a kernel density estimator to the θ coordinate

of T , with the bandwidth determined through cross-validation.

• FlexCode_Raw-NN* Employing the FlexCode estimator with Nearest

Neighbors regression.

• FlexCode_Raw-Series: Utilizing the FlexCode estimator with Spectral

Series regression as described by (Lee and Izbicki, 2016).

• FlexCode_Raw-RF: Applying the FlexCode estimator with Random For-

est regression.

180

Chapter 9. Likelihood-Free Inference (LFI)

The three FlexCode estimators (indicated by "Raw") are directly applied

to the sorted values of the original covariates X(1), . . . ,X(20), without using

minimal sufficient statistics or other summary statistics. To evaluate the per-

formance of each method, we calculate the true loss Lxo for each xo. Addition-

ally, we estimate the surrogate loss Lϵ
xo

using Equation 9.3 with an additional

sample of size B′ = 10,000 from Algorithm 1.

9.2.1.1 CDE and Method Selection

Figures 9.1 and 9.2,(left) show the effectiveness of methods in estimating

posterior density for Settings 1-2. Panels (a) show the proportion of instances

where each method yields optimal results based on true loss from Equation 9.1.

Generally, FlexCode-based methods outperform ABC, especially with larger

prior variances. FlexCode with Nearest Neighbors regression excels in this

context, while FlexCode with expansion coefficients via Spectral Series regres-

sion is also competitive, as supported by Panels (c) displaying average true loss

with standard errors.

Figures 9.1 and 9.2, right, summarizes our method selection algorithm’s

performance. Panels (b) show the agreement between the true loss Lxo(f̂ ,f)
and the estimated loss (Equation 9.3) in method selection. Two algorithm vari-

ations are presented: one including all data (triangles) and another excluding

cases with inconclusive confidence intervals (circles). The baseline represents

random method selection. The plots consistently show similar conclusions be-

tween true and estimated losses. Additional scatterplots (Panels d) illustrate

differences between true and estimated losses for specific settings, confirming

agreement between surrogate and true losses in identifying the best method

for posterior density estimation.

9.2.1.2 Summary Statistic Selection

In this section, we assess the performance of FlexCode-RF for summary

statistics selection (Sec. 9.1.3). For this purpose, the following summary statis-

tics were used: The mean is the average of the data points. The median
represents the central value of the data points. For mean1, we calculate the

average of the first half of the data points, while mean1 is the average of the

181

9.2. Examples

latter half. The SD is the standard deviation of the data points , while IQR
is the difference between the 75th and 25th percentiles. The Quantile1 is

the first quartile of the data. Lastly, we consider 43 independent random vari-

ables∼N(0,1), which are by construction not informative about the parameter

value.

0%

25%

50%

75%

100%

0.
50

11
.5

6
22

.6
1

33
.6

7
44

.7
2

55
.7

8
66

.8
3

77
.8

9
88

.9
4

10
0.

00

σ0

B
es

t m
et

ho
d

ABC FlexCode_Raw−NN
FlexCode_Raw−RF FlexCode_Raw−Series

(a)

●
●

●

●
● ● ● ● ● ●

0%

25%

50%

75%

100%

0.
50
11

.5
6
22

.6
1
33

.6
7
44

.7
2
55

.7
8
66

.8
3
77

.8
9
88

.9
4

10
0.

00

σ0

A
gr

ee
m

en
t b

et
w

ee
n

 tr
ue

 a
nd

 e
st

im
at

ed
 l

os
s

● Without zeros All samples

(b)

●
●

●
● ● ● ● ● ● ●

0.01

0.10

0 25 50 75 10
0

σ0

M
ea

n
tr

ue
 lo

ss
 (

lo
g

sc
al

e)

●ABC FlexCode_Raw−NN
FlexCode_Raw−RF FlexCode_Raw−Series

(c)

L(fABC,f)−L(fNN,f)

L ε^
(f

A
B

C
,f)

−
L ε^

(f
N

N
,f)

(d)

Figure 9.1: CDE and method selection for scenario 1. Left: Rejection ABC excels

with small σ0, while NN and Series FlexCode perform better for moderate and

large σ0. Right: Surrogate loss estimation guides method choice; horizontal

line in (b) represents random selection.

Figures 9.3 and 9.4 present results from applying FlexCode-RF and ABC

across different scenarios using various summary statistics. Panels (a) show

the true loss as the number of statistics increases. FlexCode-RF remains ro-

bust to the inclusion of irrelevant statistics, while standard ABC’s performance

deteriorates as noise or nuisance statistics are added. Panels (b) display the

average importance of each statistic, as defined by Equation 3.9, where ui,j

represents the mean decrease in the Gini index. FlexCode-RF assigns high

importance to sufficient statistics or those strongly correlated with them. For

182

Chapter 9. Likelihood-Free Inference (LFI)

0%

25%

50%

75%

100%

0.
10

0.
64

1.
19

1.
73

2.
28

2.
82

3.
37

3.
91

4.
46

5.
00

V(τ)

B
es

t m
et

ho
d

ABC FlexCode_Raw−NN
FlexCode_Raw−RF FlexCode_Raw−Series

(a)

●

● ● ●
●

●
●

● ●
●

0%

25%

50%

75%

100%

0.
10

0.
64

1.
19

1.
73

2.
28

2.
82

3.
37

3.
91

4.
46

5.
00

SD(τ)

A
gr

ee
m

en
t b

et
w

ee
n

 tr
ue

 a
nd

 e
st

im
at

ed
 lo

ss

● Without zeros All samples

(b)

●

●

● ●

● ● ●
●

● ●

1e−02

2e−03

5e−03

0 1 2 3 4 5

V(τ)M
ea

n
tr

ue
 lo

ss
 (

lo
g

sc
al

e)

●ABC FlexCode_Raw−NN
FlexCode_Raw−RF FlexCode_Raw−Series

(c)

L(fABC,f)−L(fNN,f)
L ε^

(f
A

B
C
,f)

−
L ε^

(f
N

N
,f)

(d)

Figure 9.2: CDE and method selection for scenario 2. Left: Rejection ABC excels

with small σ0, while NN and Series FlexCode perform better for moderate and

large σ0. Right: Surrogate loss estimation guides method choice; horizontal

line in (b) represents random selection.

instance, in Figure 9.3, location measures receive higher importance, whereas

in Figure 9.4, dispersion measures are more significant. FlexCode-RF consis-

tently assigns zero importance to random noise statistics, indicating that the

summary statistic selection method effectively identifies relevant statistics for

accurate posterior estimation, f(θ|xo).

9.2.2 Application: Estimating a Galaxy’s Dark Matter Density
Profile

We extend our analysis to more complex simulations under the ΛCDM

framework, the standard cosmological model describing a universe dominated

by dark energy and cold dark matter. Specifically, we focus on the dark

matter distribution in galaxies using the Navarro-Frenk-White (NFW) profile

183

9.2. Examples

●

●

● ● ● ● ● ●
●

●

●
● ●

● ● ● ●

●

●

●

FlexCode−RF ABC

1 2 3 4 5 6 7 8 25 50 1 2 3 4 5 6 7 8 25 50
0.000

0.025

0.050

0.075

0.100

Number of Summary Statistics

M
ea

n
tr

ue
 lo

ss

σ0
●0.5 11.56

22.61 33.67

(a)

0.0

0.1

0.2

0.3

0.4

M
ea

n

M
ed

ian

M
ea

n1

M
ea

n2
Sd

IQ
R

Qua
rti

le1

R1 R2 R3 R4 R5 R6 R7 R8 R9
R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43

Summary Statistic

A
ve

ra
ge

 Im
po

rt
an

ce Location Scale Random Noise

(b)

Figure 9.3: Summary statistics selection in scenario 1 (mean of a Gaussian with

known variance). ABC sensitivity to noise is clear in (a) (entries 8-51), with

FlexCode-RF showing robustness. FlexCode-RF identifies location statistics in

(b) (entries 1-5).

(Navarro, 1996), a widely used model for describing the density profile of dark

matter halos. Our goal is to constrain the NFW parameters for the Sculptor

dwarf spheroidal galaxy, starting with the critical energy Ec (Strigari et al.

2017, Equation 15), while keeping other parameters fixed at standard values.

The observed data x0 include velocities and positions of 200 stars, simu-

lated based on the NFW model (Liu et al., 2018). We employ ABC, defining

the distance metric as the L2
norm between kernel density estimates of the

joint distribution of velocity and position. This distance metric is applied

consistently across FlexCode-NN and FlexCode-Series. For functional data,

we use FlexCode-Functional, which employs functional kernel regression for

coefficient estimation (Ferraty and Vieu, 2006).

To evaluate the performance of the CDE methods, we generate 1000 test ob-

servations, with each ABC sample containing 1000 accepted observations (ac-

ceptance rate of 0.1). The prior for Ec is uniformly distributed over U(0.01,1.0).
Figure 9.5 illustrates the true losses for various methods. The left panel

shows that FlexCode estimators outperform ABC for certain scenarios with

184

Chapter 9. Likelihood-Free Inference (LFI)

● ●

● ●

● ● ●
●

●
●

● ● ● ●

●

● ●

●

● ●

FlexCode−RF ABC

1 2 3 4 5 6 7 8 25 50 1 2 3 4 5 6 7 8 25 50

0.04

0.08

0.12

0.16

Number of Summary Statistics

M
ea

n
tr

ue
 lo

ss
SD(τ)

●0.64 1.19
1.73 2.28

(a)

0.0
0.1
0.2
0.3
0.4
0.5

M
ea

n

M
ed

ian

M
ea

n1

M
ea

n2
Sd

IQ
R

Qua
rti

le1

R1 R2 R3 R4 R5 R6 R7 R8 R9
R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43

Summary Statistic

A
ve

ra
ge

 Im
po

rt
an

ce Location Scale Random Noise

(b)

Figure 9.4: Summary statistics selection in scenario 2 (precision of a Gaussian

with unknown precision). ABC sensitivity to noise is clear in (a) (entries 8-

51), with FlexCode-RF showing robustness. FlexCode-RF identifies location

statistics in (b) (entries 1-5) and emphasizes dispersion statistics (e.g., entry 5).

Analytic Estimated

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0

20

40

60

Ec

Lo
ss

ABC FlexCode−Functional FlexCode−NN FlexCode−Series

Figure 9.5: Left: True loss in various parameter regions. Right: The estimated

surrogate loss (here shifted with a constant for easier comparison) can be used

to identify improvements upon the ABC estimates.

185

9.3. Likelihood Free Frequentist Inference (LF2I)

low true Ec. The right panel, which compares estimated surrogate losses,

supports similar findings, corroborating that the surrogate loss serves as a

practical substitute for the unavailable true loss.

9.3 Likelihood Free Frequentist Inference (LF2I)

The goal of Likelihood Free Frequentist Inference (LF2I; Dalmasso et al.

2020a; Dalmasso et al. 2024) is to construct a set R(X) such that

PX|θ (θ ∈R(X)) = 1−α, (9.4)

where α ∈ (0,1), regardless of the true value of the unknown parameter θ ∈Θ.

That is, R(X) needs to be a frequentist set – it needs to control conditional

coverage. In this section, we describe how LF2I achieves this. The full process

is illustrated in Figure 9.6.

9.3.1 Confidence Sets via Neyman Inversion

The starting point of LF2I is Neyman confidence sets, which are based on

Neyman’s inversion of hypothesis test (Neyman, 1937). Specifically, Neyman’s

confidence sets have the shape

R(X) := {θ ∈Θ |τ(X;θ)≥ Cθ} , (9.5)

where τ(X;θ) measures how plausible it is that X was generated from θ (for-

mally, it is a test statistic for null hypothesis that the data was generated from θ;

see Section 9.3.2), and Cθ is chosen so that conditional coverage holds (Equa-

tion 9.4). From a hypothesis test perspective, Cθ is the rejection cutoff that

leads to type I error control. In other words, R(x) contains plausible values

for θ (according to the metric τ) given data x.

The challenges of using Neyman’s confidence sets in an LFI context are

that:

• Most standard techniques for constructing τ require knowledge of an

analytical expression for the likelihood function. This is the case of the

Likelihood Ratio Test, for instance.

186

Chapter 9. Likelihood-Free Inference (LFI)

Figure 9.6: The three-branch modular framework for likelihood-free frequen-

tist inference (LF2I). The middle branch is used to construct a test statistic; the

left branch calibrates cutoffs to test hypotheses and thus generated confidence

sets. The right branch provides independent diagnostics to test if the con-

structed sets have the right coverage.

• The standard derivation of Cθ either uses asymptotic derivations that

only work if the sample size is large and for certain test statistics, or uses

Monte Carlo simulations that are each fixed θ, which is too expensive for

larger dimensional spaces.

In what follows, we discuss how to address these challenges using some

of the Uncertainty Quantification techniques we have introduced before. We

also discuss how to check whether the confidence regions given by LF2I have

the correct conditional coverage. Code to implement LF2I in Python can be

found at https://github.com/lee-group-cmu/lf2i.

9.3.2 Choosing a Test Statistic

Any test statistic τ can be used in LF2I as long as it can be computed. In

this section, we show some examples of statistics that can be used. Some of

these statistics are influenced by Bayesian methods, although we apply them

in a frequentist context.

187

https://github.com/lee-group-cmu/lf2i

9.3. Likelihood Free Frequentist Inference (LF2I)

9.3.2.1 Likelihood-Based Statistics

Many traditional test statistics rely on the likelihood function f(x|θ). Here,

we will discuss two of them, and then discussed how they can be used in a LFI

setting.

The first one is the likelihood ratio (LR) statistic, which tests H0 : θ = θ0

using

λ(x;θ0) = f(x|θ0)
supθ∈Θ f(x|θ) . (9.6)

The second one is the Bayes Factor (BF), which essentially changes the maxi-

mization in the LR statistic by an integration with respect to a prior distribution

f(θ):

β(x;θ0)≡ f(x|H0)
f(x|H1) = f(x|θ0)∫

Θ
f(x|θ)df(θ)

. (9.7)

In an LFI setting, f(x|θ) cannot be evaluated, and therefore these statistics

cannot be computed. Thus, they need to be estimated. In order to do that,

consider a proposal distribution π(θ) over the parameter space. We can use

the forward simulator to generate (θ1,X1), . . . ,(θB ,XB), where each (θ,X) ∼
π(θ)f(x|θ). By construction, the conditional density of X|θ is f(x|θ), and

thus this quantity can be estimated using the conditional density estimators

discussed in Chapter 3.

Dalmasso et al. (2020a) and Dalmasso et al. (2024) in particular estimate the

likelihood function using the ratio trick (Section 3.7). Notice that the notation

of that section corresponds to the choice y := x and x =: θ. Dalmasso et al.

(2024) takes g(x|θ) in Equation 3.13 to be g(x), that is, a distribution that does

not depend on θ. In this way,

O(x;θ) = f(x|θ)
g(x) ,

that is, O(x;θ) is, up to g(x), the likelihood function. Now, because g(x) is

constant in θ, this implies that theO(x;θ) is a version of the likelihood function,

and therefore can be used in the LR statistic or the BF without the needs of

applying the correction g(x|θ) from Equation 3.14 (Izbicki et al., 2014). In other

words, the LR statistic can be estimated by

188

Chapter 9. Likelihood-Free Inference (LFI)

λ̂(x;θ0) = Ô(x;θ0)
supθ∈Θ Ô(x;θ)

,

and the Bayes Factor by

β̂(x;θ0) = Ô(x;θ0)∫
θ∈Θ

Ô(x;θ)dπ(θ)
,

where

Ô(x;θ) := P̂(Y = 1|x,θ)
P̂(Y = 0|x,θ)

.

Moreover, if g(x) :=
∫

f(x|θ)dπ(θ) = f(x) (that is, if g is chosen to be the

marginal distribution of x with respect to the prior π(θ)), the odds becomes

the Bayes factor itself, and thus, in this special case,

β̂(x;θ0) = Ô(x;θ0).

See Cranmer et al. (2020), Heinrich (2022), and Thomas et al. (2022) for

variations of these statistics and how to estimate them based on data from the

simulator.

9.3.2.2 Waldo

An alternative test statistic that can be used to construct confidence sets is

the Waldo statistic (Masserano et al., 2023), which is given by

ω(x;θ0) = (E[θ|x]− θ0)tV[θ|x]−1(E[θ|x]− θ0), (9.8)

where E[θ|x] and V[θ|x] represent the posterior mean and variance of θ given

data x. Waldo is a Bayesian version of the Wald test statistic (Wald, 1943).

Similar to the likelihood-based statistics, Waldo cannot be directly com-

puted in an LF2I setting. However, it can be approximated by

ω̂(x;θ0) = (Ê[θ|x]− θ0)tV̂[θ|x]−1(Ê[θ|x]− θ0), (9.9)

where Ê[θ|x] and V̂[θ|x] are estimates of E[θ|x] and V[θ|x] obtained using the

189

9.3. Likelihood Free Frequentist Inference (LF2I)

data from the simulator, (θ1,X1), . . . ,(θB ,XB) ∼ π(θ)f(x|θ). These can be

obtained in two ways:

• Using an estimate of the posterior distribution, f̂(θ|x), which can be

obtained using e.g. the ABC-CDE approach discussed in Section 9.1. For

instance, if θ ∈ R, this corresponds to taking E[θ|x] :=
∫

θf̂(θ|x)dθ and

V[θ|x] :=
∫

θ2f̂(θ|x)dθ−E2[θ|x].

• Directly estimating both E[θ|x] and V[θ|x] via regression/supervised

learning. Concretely, E[θ|x] is the regression of θ on x, and V[θ|x] =
E[θ2|x]−E2[θ|x] is the difference between the regression of θ2

on x and

the first regression (squared) that was already estimated.

Masserano et al. (2023) shows that the Waldo statistic leads to larger pow-

er/tighter (frequentist) confidence sets than the Wald statistic in regions where

π(θ) places large mass.

9.3.3 Calibrating the Cutoffs

After selecting the test statistic, denoted as τ(X;θ), the next step is to

estimate Cθ for constructing the confidence set described in Equation 9.5. The

estimated confidence set will then be

R̂(X) :=
{

θ ∈Θ

∣∣∣τ(X;θ)≥ Ĉθ

}
.

To ensure that this set achieves a confidence level of 1− α, it is necessary to

define Cθ as follows:

Cθ = F −1
τ(X;θ)|θ(α),

where Fτ(X;θ)|θ represents the cumulative distribution function of the random

variable τ(X;θ) conditioned on the parameter θ. In other words, Cθ is the α

conditional quantile of τ(X;θ) on θ. Again, in an LFI setting we do not know

this distribution, but we can estimate it. There are a few ways of doing it:

• [Monte Carlo] Use the simulator to generate a sufficiently large Monte

Carlo sample consisting of X1, . . . ,XB , all sampled at the same θ. Then,

estimate Cθ by computing the α quantile of the values

{τ(X1;θ), . . . , τ(XB ;θ)}.

190

Chapter 9. Likelihood-Free Inference (LFI)

Notice however that, to compute confidence sets, it is necessary to es-

timate Cθ for a fine grid of θ values. This approach can therefore be

expensive, especially when dealing with a parameter space of large di-

mensions.

• [Quantile Regression] Dalmasso et al. (2020a) and Dalmasso et al. (2024)

use quantile regression to regress τ(X;θ) on θ. Specifically, they (i) use

the simulator to obtain a training set (θ1,X1), . . . ,(θB ,XB), (ii) compute

the transformed data (θ1, τ(X1;θ1)), . . . ,(θB , τ(XB ;θB)), and (iii) use one

of the techniques of Section 3.9 to α-quantile regress τ(X;θ) on θ.

• [Partition-based Regression (TRUST)] TRUST (Cabezas et al., 2024) is in-

spired by conformal methods (Section 5.3) and estimates the distribution

of τ(X;θ) conditional on θ by partitioning Θ. It achieves this by fitting a

regression tree to simulated data (θ1,X1), . . . ,(θB ,XB). The steps are as

follows:

1. Using the modified training data (θ1, τ(X1;θ1)), . . . ,(θB , τ(XB ;θB)),
fit a regression tree to predict τ based on θ. This tree partitions the

parameter space Θ into disjoint regions A1,A2, . . . ,AK , where each

region corresponds to a leaf of the tree.

2. For a given θ ∈ Θ, determine the leaf Ak that contains θ. Let Ik =
{b ∈ {1, . . . ,B} : θb ∈ Ak} denote the indices of the simulated pairs

(θb,Xb) that fall within the same partition. The empirical CDF of

τ(X;θ) within Ak is

HB(t | θ) = 1
|Ik|

∑
b∈Ik

I(τ(Xb;θb)≤ t),

where I(·) is the indicator function.

3. The cutoff Cθ for θ is estimated as the α-quantile of the values

{τ(Xb;θb) : b ∈ Ik}, that is, Ĉθ = H−1
B (α | θ), where H−1

B (α | θ) is the

generalized inverse of HB .

TRUST confidence sets R̂(X) have finite-sample local coverage:

P
(

θ ∈ R̂(X) | θ ∈A
)

= 1−α,

191

9.3. Likelihood Free Frequentist Inference (LF2I)

where A is a subset of Θ designed to approximate the conditional cover-

age: P
(

θ ∈ R̂(X) | θ
)
≈ P

(
θ ∈ R̂(X) | θ ∈A

)
. Additionally, the method

achieves B-asymptotic conditional coverage, even for small observed

datasets:

lim
B→∞

P
(

θ ∈ R̂(X) | θ
)

= 1−α.

That is, TRUST coverage is correct as long as the number of simulations

is large. Cabezas et al. (2024) also introduces TRUST++, is an extension

of TRUST that employs random forests.

9.3.4 Evaluating Coverage and UQ over the Confidence Sets

Once the test statistic is selected and cutoffs are determined, we construct

a confidence via R̂(X) :=
{

θ ∈Θ

∣∣∣τ(X;θ)≥ Ĉθ

}
. Notice that R̂(X) may not be

a valid confidence set for every θ ∈ Θ due to the fact that Ĉθ is an estimate

of Cθ. That is, the constructed confidence set may not achieve the correct

coverage. To assess the adequacy of such estimates, LF2I examines their quality

by estimating the coverage probability as a function of θ. This evaluation helps

ensure that the confidence set provides reliable coverage across Θ.

In order to check coverage, LF2I uses the fact that

PX|θ

(
θ ∈ R̂(X)

)
= E [Z|θ] ,

where Z := I(θ ∈R(X)) and (θ,X) is drawn from the simulator. In other

words, the coverage probability is the regression of Z on θ. Thus, LF2I (i)

uses the simulator to obtain a training set (θ1,X1), . . . ,(θB ,XB), (ii) compute

the transformed data (θ1,Z1)), . . . ,(θB ,ZB), where Zi = I(θi ∈R(Xi)) and (iii)

use e.g. one of the techniques of Chapter 2 to regress Z on θ (equivalently,

fit a probabilistic classifier). By checking whether such estimates are far from

1− α for all θ’s, one can determine the adequacy of coverage for R̂(X) and

pinpoint regions that require improvement for specific θ values. Subsequently,

adjustments can be made to reestimate Cθ in those identified areas.

TRUST provides an alternative approach to evaluate the accuracy of the

estimated confidence sets R̂(X): it estimates the uncertainty around the true

R(X). For each θ ∈Θ, TRUST constructs a confidence set (ĈL
θ , ĈU

θ) for Cθ using

standard quantile-based methods (Hahn and Meeker, 2011), and propagates

192

Chapter 9. Likelihood-Free Inference (LFI)

this uncertainty to compute:

I(X) = {θ ∈Θ |τ(X;θ)≥ ĈU
θ }, O(X) = {θ ∈Θ | τ(X;θ)≤ ĈL

θ },

U(X) = {θ ∈Θ | ĈL
θ ≤ τ(X;θ)≤ ĈU

θ }.

Here, I(X) contains parameters confidently inside the interval, O(X) those

confidently outside, and U(X) those with uncertain status. Following 3-way

hypothesis testing (Berg, 2004; Esteves et al., 2016; Izbicki et al., 2023), these

correspond to acceptance, rejection, and agnostic regions. If U(X) is large,

increasing the number of simulations B can improve the estimate of R(X).

9.3.5 Example: Two Moons

We compare the methods for calibrating cutoffs in LF2I described in Section

9.3.3 using the following implementations:

• [Monte Carlo] Simulates nMC statistics over an equally spaced grid of

Θ. The (1−α)-quantile of these simulations at the nearest grid point es-

timates Cθ. For multi-dimensional Θ, the grid combines equally spaced

one-dimensional grids for each coordinate. The grid size ensures com-

parability across methods by maintaining the simulation budget B pro-

portional to d = dimΘ, with nMC = 500.

• [Quantile Regression via Boosting] Estimate Cθ through the (1− α)
conditional quantile of τ(X,θ) given θ, implemented using scikit-learn’s

boosting.

• [TRUST++] Applies the tuned version of TRUST++ described in Cabezas

et al. (2024).

For this example, x = (x1,x2) ∈ R2
, and θ ∈ R2

. The model is given by the

two moons model (Greenberg et al., 2019b), in which the posterior exhibits a

bimodal moon-shaped structure. The prior θi ∼ U(−1,1) is used to estimate τ

over Θ = (−1,1)2
. We use normalizing flows (Section 3.6) to approximate the

posterior. Further details are in Cabezas et al. (2024).

Figure 9.7 illustrates the confidence regions for a realization of the two

moons example. Both TRUST++ and boosting closely approximate the oracle

193

9.3. Likelihood Free Frequentist Inference (LF2I)

region (that is, the region that has the correct coverage), whereas the Monte

Carlo method underestimates its size. While TRUST++ and boosting produce

similar regions, TRUST++ offers an additional layer of uncertainty quantifica-

tion, providing insights into oracle information constrained by the simulation

budget.

0.4

0.2
Trust++ tuned Trust ++ uncertainty

0.2 0.4

Oracle

0.2 0.4

0.4

0.2
Boosting

0.2 0.4

Monte-Carlo

1

2

True

Figure 9.7: Visualization of 95% confidence regions and TRUST++ uncertainty

for the two moons example. Maroon areas indicate high confidence from

TRUST++, while salmon areas highlight uncertainty.

9.3.6 Nuisance Parameters

The parameters θ can often be decomposed into θ = (µ,ν), where µ ∈M

are parameters of interest and ν ∈N are nuisance. In this case, one only cares

about constructing confidence sets for µ. In this setting, Neyman confidence

sets then have the shape

R(X) := {µ ∈M |τ(X;µ)≥ Cµ} ,

where τ(X;µ) measures how plausible it is that X was generated from µ. We

now discuss how to design both τ(X;µ) and Cµ.

194

Chapter 9. Likelihood-Free Inference (LFI)

One way to create a test statistic τ(X;µ) is to use the techniques from Section

9.3.2 to design a statistic that tests the hypothesis

H0 : µ = µ0 and ν = ν0.

Denote this statistic by τ(X; (µ0,ν0)). This statistic can then be integrated over

ν to produce τ(X;µ) in a Bayesian context: τ(X;µ) =
∫

τ(X; (µ,ν))dP (ν). Al-

ternatively, in a frequentist vain, one may take its maximum value: τ(X;µ) =
supν∈N τ(X; (µ,ν)). Furthermore, certain statistics automatically manage nui-

sance parameters without additional adjustments. This is the case of Waldo

(Section 9.3.2.2):

ω(x;µ0) = (E[µ|x]−µ0)tV[µ|x]−1(E[µ|x]−µ0).

Once the test statistic is defined, the cutoffs Cµ need to be chosen. One way

of doing that in order to guarantee that R(X) has coverage 1−α is to set Cµ to

be

Cµ = inf
ν∈N

F −1
τ(X;µ)|µ,ν

(α),

where Fτ(X;µ)|µ,ν represents the cumulative distribution function of the ran-

dom variable τ(X;µ) conditioned on all parameters (µ,ν). Of course, such

cumulative distribution must be estimated, which can be done in the same

way as described in Section 9.3.3. Computing the infimum is computationally

expensive of N is high-dimensional. In TRUST and TRUST++ however the

problem is simplified because ĤB is computed using a partition of Θ. This

means that the minimization only requires evaluating Ĥ−1
B (1− α|µ,ν) for a

finite number of ν values, one for each element of the partition that covers µ.

For example, in the case of TRUST, this approach only requires minimization

over the leaves associated with the given µ.

An alternative approach to handle nuisance parameters is to integrate

F −1
τ(X;µ)|µ,ν

(α) with respect to ν, although this procedure does not have cover-

age guarantees (Dalmasso et al., 2024). See also Masserano et al. (2024) for a

different way to handle nuisance parameters that also controls coverage, and

Dalmasso et al. (2024) for alternative approximations such as profiling.

195

9.3. Likelihood Free Frequentist Inference (LF2I)

9.3.7 Example: Muon energy estimation

In this section, we follow Dalmasso et al. (2024) to estimate muon energy

using a high-granularity calorimeter in a particle collider experiment. Muons

are particles similar to electrons but significantly heavier. They are key to

studying the subatomic world and testing the predictions of the Standard

Model of particle physics – a theory that describes how fundamental particles

and forces interact. Despite its strong predictive power, the Standard Model

leaves important questions unanswered, making precise measurements, such

as muon energy, essential for uncovering potential physics beyond its scope.

In the experiment, each data point is represented as a 3D image, x, with a

dimensionality of approximately 50,000. These images represent the detailed

pattern and magnitude of energy deposits in a finely segmented calorimeter

as muons pass through it. A calorimeter is a detector designed to measure the

energy of particles by recording the energy they lose as they interact with its

material. The dataset consists of n = 1 with a total of 886,716 3D inputs, each

corresponding to a scalar muon energy θ. These data are generated through

simulations using GEANT4 (Agostinelli et al., 2003), a widely used simulator

for accurately modeling particle interactions under the Standard Model. The

dataset is publicly available at Kieseler et al., 2021.

The primary objective is to determine whether a high-granularity calorime-

ter provides tighter constraints on muon energy compared to detectors that

measure only total energy. We investigate three levels of energy measurement:

(i) a 1D input representing the sum of calorimeter cells for muons with energy

E > 0.1 GeV; (ii) 28 custom features extracted from spatial and energy informa-

tion of calorimeter cells (see Kieseler et al., 2022); and (iii) the full calorimeter

data, x ∈ R51,200
. For each data point, LF2I confidence sets are constructed

using the estimated Bayes Factor (Equation 9.7). A convolutional neural net-

work classifier, as described in Kieseler et al., 2022, is used to estimate the

odds function for the full calorimeter data, while critical values are obtained

via quantile gradient boosted trees. For the 1D and 28D datasets, a gradient

boosting classifier is employed to learn the odds function. Around 83% of the

data (B = 738,930) is used for training, with 14% allocated to estimate critical

values (B′ = 123,155). For comparison, SMC-ABC (Sisson et al., 2007), another

likelihood-free inference (LFI) algorithm, is applied to all simulated datasets,

196

Chapter 9. Likelihood-Free Inference (LFI)

Figure 9.8: LF2I outperforms SMC-ABC with nominal coverage and tighter in-

tervals. Left: Example muon data at θ ≈ 3.2 TeV in a 32×32×50 cell calorime-

ter. Center: LF2I (blue, orange, red) maintains 68.3% coverage, while SMC-

ABC (green, purple) consistently over-covers. Right: Median interval lengths.

SMC-ABC, despite computational intensity, lacks constraining power. Full

calorimeter data for SMC-ABC is omitted due to computational constraints.

utilizing the same total of B + B′ = 862,085 samples. The remaining data

(B′′ = 24,631) is reserved for validation and diagnostics.

Figure 9.8 (center) shows that LF2I with the Bayes Factor test statistic

achieves nominal coverage of 68.3% across all datasets. In contrast, SMC-ABC

produces overly conservative credible intervals, leading to over-coverage. In

terms of interval length (constraining power), Figure 9.8 (right) indicates that

SMC-ABC intervals are significantly wider than LF2I confidence sets for both

the 1D and 28D datasets. Due to computational limitations, running SMC-ABC

on the full 51,200-dimensional calorimeter data was not feasible. Notably, the

information in the data directly influences the size of LF2I confidence sets: the

full calorimeter results in noticeably smaller intervals, and therefore leads to

higher constraining power.

9.4 Summary

This chapter explored Likelihood-Free Inference in statistical models where

the likelihood function is intractable. We focused on two methodologies: Ap-

proximate Bayesian Computation via Conditional Density Estimation (ABC-

CDE) and Likelihood-Free Frequentist Inference (LF2I).

ABC-CDE was presented as an approach for estimating posterior distribu-

197

9.4. Summary

tions using conditional density estimation, providing an efficient solution from

a Bayesian perspective. LF2I was introduced as a framework for constructing

frequentist confidence sets that ensure proper coverage, regardless of the true

parameter values. Its modular design allows for the integration of various test

statistics and calibration techniques, making it adaptable to a wide range of

applications.

198

Chapter 10

Optimizing Construction
Schedules: Mitigating
Weather-Related Delays

Frustrated Workers. Designed with the help of IA.

.

The best way to predict the future

is to create it.

Peter Drucker

Construction delays can stem from various factors, including the incom-

petence of involved parties, material and equipment shortages, and adverse

weather conditions (Durdyev et al., 2020; Sanni-Anibire and Egbu, 2022; Sepas-

gozar et al., 2019). These delays negatively impact both owners and contractors,

leading to contractual penalties and reduced resource productivity. Among

these factors, weather events stand out as a significant source of uncertainty

due to their direct effect on productivity (Assaf and Al-Hejji, 2006; Schuldt

et al., 2021). Modeling delays caused by weather is particularly challenging, as

these events vary not only in time and location but also in the specific weather

conditions required for different construction tasks. Consequently, effective

project management must accurately account for these conditions for each task

to minimize potential negative impacts on productivity and deadlines.

This chapter illustrates how the tools presented in previous chapters can

estimate the uncertainty in a project’s completion time taking into account

weather conditions. Specifically, we aim to estimate the probability distri-

bution of Z, the project’s duration in days, relying exclusively on historical

meteorological data. Table 10.1 illustrates part of the meteorological dataset.

We denote such distribution as f(z|i,y), where j is the day of year and y the

year of project implementation.

Table 10.1: Example of historical data from weather stations, including daily

mean temperature, precipitation, and minimum temperature.

Weather Station Date Tmean (ºC) P (mm) Tmin (ºC) . . .
1 2020-01-31 5 0 1 . . .
1 2020-02-01 -2 0 -10 . . .
...

...
...

...
... . . .

2 2022-06-01 7 8 1 . . .
2 2022-06-02 3 24 -5 . . .
2 2022-06-03 4 17 -6 . . .
.

200

Chapter 10. Optimizing Construction Schedules: Mitigating Weather-Related Delays

The construction time will depend on a construction schedule. This sched-

ule outlines the tasks needed to produce the deliverables, including their

sequence, durations, and resource requirements (Edition, 2008). Figure 10.1

provides an example of a fictitious schedule with tasks carried out sequentially,

without accounting for weather-related delays. We assume this schedule is

known.

E C F S O P

E C F S O P

10 10 10 10 5 5

10 10 10 10 5 5

Figure 10.1: Construction schedule represented by a finite network of arcs,

where the nodes represent the activities of earthworks (E), concrete (C), form-

work (F), steelwork (S), outdoor painting (O), and pavements (P). For each task,

a planned duration is associated below the node.

We assume the climatic conditions for each task are known. Table 10.2,

adapted from Ballesteros-Pérez et al. (2017), lists an example of thresholds

defining when tasks cannot proceed. For instance, "earthworks" are halted if

the average daily temperature falls below 0ºC. We assume task limits apply

only to the specific day and do not affect subsequent days.

Table 10.2: Weather limits for type of tasks: earthworks (E), concrete (C),

formwork (F), steelwork (S), outdoor painting (O), and pavements (P). “x"

denotes conditions under which the task cannot be performed.

Weather variable E C F S O P

Minimum temperature ≤ 0ºC x x

Average temperature ≤ 0ºC x x x

Maximum temperature ≥ 40ºC x x x

Precipitation ≥ 1 mm x x

Precipitation ≥ 10 mm x x x x

Precipitation ≥ 30 mm x x x x x

Wind gusts ≥30 knots x x x x

201

10.1. Estimating the Distribution

Having these components, we are now ready to describe our estimator of

f(z|i,y).

10.1 Estimating the Distribution

Consider a project composed of a set of p tasks, represented by t = {1, . . . ,p}.
The schedule of Figure 10.1 contains p = 12 tasks. Although the tasks do not

overlap in this schedule, the method can be easily applied when they do

intersect. The project execution time, Z, is defined as the number of days until

all p tasks are completed, taking delays into account. The objective is to model

the distribution of Z by considering the execution time of each task, including

delays due to climate factors.

To achieve this, let the random variable X
(t)
i,y indicate whether task t could

be executed on day i of year y considering climatic factors:

X
(t)
i,y =

1 if task t was executed on day i of year y,

0 otherwise.

Our model assumes X
(t)
i,y ∼ Bernoulli(θ(t)

i), where θ
(t)
i is the probability of

completing task t on the i-day of a given year, with X
(t)
i,y ’s independent for each

fixed t.

Notice that, given a starting day and year, Z is a deterministic function of

X
(t)
i,y ’s. Therefore, after θ(t) = (θ(t)

1 , . . . ,θ
(t)
365) have been estimated, Z can be

sampled from this model by using Monte Carlo simulation to sample X
(t)
i,y ’s

with the estimated parameters. This method easily incorporates task depen-

dencies. For multiple tasks on the same day, each task is checked indepen-

dently.

The Monte Carlo samples are implicitly defining an estimate f̂(z|i,y), which

can then be used to approximate α-quantiles and the mean of Z, as well as

to compute prediction sets or any of the other tools developed in previous

chapters.

The parameters θ(t)
can estimated using historical weather data in various

202

Chapter 10. Optimizing Construction Schedules: Mitigating Weather-Related Delays

ways. For instance, we can use a KNN-like estimate:

θ̂
(t)
i = 1

N

Y∑
y=1

∑
m∈N (l)

∑
j∈N (i)

Yt,m,j,y, (10.1)

where N (l) is the set of Kl locations closest to the location where the con-

struction will be performed, N (i) is the set of Ki days closest to i,1 N =
Y × |N (i)| × |N (l)|, and Yt,l,i,y is the indicator that task t could be performed

on location l on the i-th day of year y. For other approaches to estimate this

parameter, see Comito et al. (2025).

10.2 Model Selection

Suppose we temporally split our dataset into two parts: training and vali-

dation. Using the training set, we create I estimates for f(z|j,y):

f1(z|j,y), . . . ,fI(z|j,y),

where j is the day of the year and y the year of project implementation. Each

estimate can come from different configurations of tuning parameters of a

given model, or entirely different models.

Our goal in this section is to select the model that best approximates the

true f . To achieve this, we first create variations of the validation datasets,

denoted by (Z1, I1,Y1), . . . ,(Zm, Im,Ym), using various temporal splits of the

original validation dataset. Specifically, we randomly choose different starting

dates (Ik,Yk). The Zk values are then obtained by applying the construction

schedule to data after the chosen start date, reflecting actual observed weather

conditions on the weather datasets.

Given a loss function L, we can estimate the risk of an estimate f̂ via

R̂(f, f̂) = 1
m

m∑
k=1

L(Zk, f̂(z|Ik,Yk)).

1
Notice that “day of the year" is a circular variable, so instead of the Euclidean distance we

use e.g. d(i, j) = min{|i − j|,365 − |i − j|}.

203

10.2. Model Selection

Next, we discuss choices of loss functions.

10.2.1 CDE loss

Inspired by the L2
loss for continuous problems (Equation 3.1), we consider

the Brier Score

L(Zk, f̂(z|ik,yk)) =
∑

z

f̂2(z|i,y)− 2f̂(Zk|i,y).

Up to a constant that does not depend on f̂ , L is a good estimator of the L2

distance ∑
z

(
f(z|i,y)− f̂(z|i,y)

)2
.

10.2.2 Weighted pinball loss

If we are primarily interested in accurately estimating certain quantiles of

f(z|j,y), we can utilize the pinball loss (Section 3.9.1).

Here, we extend the standard pinball loss by combining multiple α values

to assess model uncertainty. This is done using a weighting function w(α) to

assign weights to each α. The weighted loss is defined as:

Lw(Zk,f(z|ik,yk)) =
∫

w(α)Lα(Zk,Q(α|ik,yk))dα

where Q(α|ik,yk) is the α-quantile of f̂(y|ik,yk) and Lα is the α-pinball loss

(Equation 3.15).

The weighting function w(α) can be tailored to emphasize different parts of

the distribution based on the specific application. For example, in construction

projects, accurately estimating the upper tails of f(z) is critical to ensure the

observed value lies within the density with high probability. Therefore, it

is appropriate to weight the right tail more heavily, such as with w(α) ∝ α2
,

making higher α values more significant. Alternatively, other weights can shift

the focus to different quantiles. For instance, the left tail can be emphasized

using w(α) ∝ (1− α)2
, or both tails can be equally weighted with w(α) ∝

(α− 0.5)2
.

204

Chapter 10. Optimizing Construction Schedules: Mitigating Weather-Related Delays

10.3 Example

To illustrate the application of the model, we used daily meteorological

data from the UK, following criteria similar to those of Ballesteros-Pérez et al.

(2017). The MIDAS dataset (Met Office MIDAS Open: UK Land Surface Stations
Data (1853-current) 2019) includes daily records of precipitation, temperature,

and wind speed from 1985 to 2020. We applied comparable inclusion and

exclusion criteria for weather stations, imputing missing values with a 7-day

moving average if at least three observations were available. Stations with

significant data gaps in the validation and test sets were excluded, resulting

in the selection of 68 stations for analysis. The model was trained on years

1985-2012, and the years 2013-2016 were used to select its tuning parameters.

We used the schedule from Figure 10.1 and the climatic limits from Table

10.2. The project duration was fixed at 160 days, disregarding regional climatic

conditions. We estimated the probability of workable days using only days

with complete data for all selected variables.

Figure 10.2 demonstrates a byproduct of our estimates f̂(z|i,y) as a func-

tion of its proposing starting day i for a specific location (station 908). The

results highlight the model’s effectiveness in providing accurate and action-

able insights for project scheduling. The comparison between the model’s

estimates and the actual project durations, represented by the observed lines

at the bottom, underscores the method’s precision and reliability.

205

10.3. Example

0

0.01

0.02

0.03

0.04

200 250 300 350

Observed

Starting month
January
February
March
April
May
June
July
August
September
October
November
December

Execution time (days)

Pr
ob

ab
ili

ty

Figure 10.2: Illustrative application of the method using real-world data: the

model estimates the distribution of project durations as a function of its starting

date, providing valuable insights for optimal project scheduling. The observed

lines at the bottom represent actual project durations, demonstrating the high

accuracy of the model’s estimates.

206

Chapter 11

Closing Thoughts

Expectation. Gustav Klimt, 1905–1909, MAK - Museum of Applied Arts,

Vienna.

11.1. Summary of Key Concepts

Doubt is not a pleasant condition,

but certainty is absurd.

Voltaire

11.1 Summary of Key Concepts

This book has explored a variety of tools for Uncertainty Quantification in

machine learning, focusing on how different types of uncertainty – aleatoric

and epistemic – appear in both theoretical and applied settings. Aleatoric

uncertainty refers to the inherent variability in the data, which cannot be

reduced even with an infinite amount of data points. It is driven by randomness

in the system being modeled and is captured by the conditional distributions of

Y given x, which is the f(y|x) in regression and P(Y = y|x) in classification. In

contrast, epistemic uncertainty arises from a lack of knowledge of the true data

generating process f(y|x) due to insufficient data. While aleatoric uncertainty

can only be reduced by gathering additional features for the sample points,

epistemic uncertainty, in principle, can be diminished as more data is collected,

assuming the model effectively captures the true underlying process.

We saw several approaches to quantify aleatoric uncertainty by estimating

conditional densities. In classification problems, probabilistic classifiers au-

tomatically estimate f(y|x) as long as a proper loss function is used to train

and choose parameters. For regression problems, we saw techniques that

include parametric models, kernel-based approaches, and flexible nonpara-

metric models like FlexCode, mixture models, and normalizing flows. After

the conditional density has been estimated, we saw that prediction sets can be

constructed to account for both aleatoric and epistemic uncertainties. These

sets can be derived directly from the conditional density estimates, or quan-

tities derived from them, such as quantiles, means, and variances. Notably,

conformal methods provide a flexible and increasingly popular framework for

constructing prediction sets with guaranteed marginal coverage as long as the

data is i.i.d.

Although conformal methods are straightforward to apply and can be

208

Chapter 11. Closing Thoughts

adapted to a wide range of models, they do not guarantee conditional coverage.

As a result, they may over- or under-cover certain subgroups of the data. To

mitigate this limitation, we explored enhancements to conformal prediction

that improve conditional coverage properties, ensuring better reliability across

various regions of the feature space.

An alternative approach to modeling both aleatoric and epistemic uncer-

tainty is through Bayesian methods, which inherently combine these uncer-

tainties. Indeed, the posterior predictive distribution f(y|x,D), where D rep-

resents the training data, captures aleatoric uncertainty via the model’s condi-

tional distribution and epistemic uncertainty through the posterior over model

parameters. This distribution can then be directly used to construct Bayesian

prediction sets. These sets can also be further refined with conformal pre-

diction techniques to ensure valid coverage. However, Bayesian models often

rely on computationally intensive methods such as Markov Chain Monte Carlo

(MCMC), limiting scalability for large or complex datasets.

Neural networks, when combined with techniques such as dropout and

deep ensembles, provide an alternative practical tool for managing epistemic

uncertainty. Although these methods may initially seem ad-hoc, they can

be understood as approximations to Bayesian solutions under specific priors.

For instance, Monte Carlo dropout approximates Bayesian posteriors by sam-

pling from the model’s uncertainty during both training and prediction. Deep

ensembles, which aggregate predictions from multiple neural networks with

different initializations, offer another way to capture model uncertainty. How-

ever, it remains unclear whether these approximations are sufficiently accurate

or if the chosen priors are appropriate, especially in complex models. This is

crucial since the prior selection directly influences the estimation of epistemic

uncertainty.

We also saw that the bootstrap as a tool to evaluate epistemic uncertanties

under a frequentist perspective. The bootstrap can be applied to any model,

but its coverage guarantees are asymptotic and require assumptions to be met.

Calibration is another important aspect of UQ. It ensures that probabilistic

predictions reflect actual observed frequencies, making it essential in both re-

gression and classification tasks. However, calibration alone is not sufficient.

While many models may be calibrated, some can be dull and fail to fully utilize

209

11.2. Limitations of UQ Approaches

the predictive power of the available data. For this reason, calibration tech-

niques should only be applied after selecting the best model using appropriate

proper loss functions, such as the Brier score, cross-entropy loss or the L2

loss. In this context, calibration serves as a fine-tuning step, rather than as the

primary criterion for model selection.

11.2 Limitations of UQ Approaches

While uncertainty quantification is a powerful tool for improving model

reliability, it also comes with limitations. In this section we explore some of

them.

11.2.1 Assumptions and Ontological Uncertainties

UQ methods often rely on assumptions about the underlying data distribu-

tion and the correctness of the models being used. For example, Bayesian UQ

methods assume that the prior distributions adequately reflect the one’s un-

certainty about model parameters. However, poorly chosen priors or models

that fail to capture the true data-generating process can lead to misleading un-

certainty estimates. This issue is particularly pronounced in high-dimensional

spaces, where defining sensible priors becomes increasingly challenging.

Even though often referred to as “distribution-free", standard conformal

methods rely on the i.i.d. assumption to achieve marginal coverage. As we have

seen, achieving asymptotic conditional coverage or other desirable properties

requires even stricter assumptions that may not be met in real-world scenarios.

In real-world applications, the distribution of training data frequently dif-

fers from that observed during deployment. This shift can compromise the

reliability of uncertainty quantification if not adequately addressed. Tech-

niques like domain adaptation, transfer learning, and importance weighting

have been developed to adjust models and improve alignment with new data

distributions (Gibbs and Candes, 2021; Izbicki et al., 2017; Kasa et al., 2024;

Masserano et al., 2024; Tibshirani et al., 2019; Vaz et al., 2019). However, these

methods often rely on strong assumptions for effective correction or may only

optimize against specific criteria, such as marginal validity (Gibbs and Candès,

210

Chapter 11. Closing Thoughts

2024).

Despite these advancements, there remain limits to what can be anticipated,

leading to uncertainties that lie beyond the model’s assumptions – referred to

as ontological uncertainty, or “unknown unknowns" (Frank et al., 2024; Gansch

and Adee, 2020; Zhang et al., 2020). Unlike known dataset shifts, which can be

mitigated through adaptation, ontological uncertainty arises from unforeseen

changes – such as new regulations, disruptive technologies, or rare global

events –that fall outside the model’s predictive scope.

11.2.2 Overconfidence

A consequence of the assumptions discussed earlier is that UQ methods

can become overly confident in the model’s predictive abilities, particularly

when they fail to address model misspecification or account for deeper, onto-

logical uncertainties arising from gaps in knowledge. While some techniques

aim to provide calibrated uncertainty estimates, they inherently rely on the

assumption that the model is capable of capturing the true underlying data

structure given sufficient data. This assumption can lead to overconfidence, even

when the uncertainty appears well-quantified.

As a result, UQ methods should be interpreted carefully, especially in

critical or fast-changing situations where the model’s limitations are not fully

clear.

11.2.3 Uncertainty Cannot Address All Risks

Finally, UQ doesn’t cover all types of risk in decision-making. For instance,

ethical challenges or societal consequences might not be reflected in a model’s

numerical uncertainties. In decisions with significant consequences, it is cru-

cial to recognize the limits of UQ and consider other factors. For instance,

even if an autonomous vehicle’s machine learning models provide accurate

uncertainty estimates about potential collisions, they cannot capture ethical

dilemmas, such as deciding how to prioritize the safety of passengers versus

pedestrians in unavoidable crash scenarios. These ethical risks lie beyond the

scope of UQ.

Human interpretation of uncertainty also presents risks that UQ cannot

211

11.3. Practical Recommendations for Using UQ in Machine Learning

address. Even with well-calibrated predictions, decision-makers may mis-

interpret or misuse uncertainty estimates due to cognitive biases or lack of

domain expertise. In important areas like national security or finance, poor

decisions can happen based on how uncertainty is handled, no matter how

good the UQ is. Relying too much on models without considering the bigger

picture can make these problems worse.

11.3 Practical Recommendations for Using UQ in
Machine Learning

We end the book by offering practical guidelines for practitioners imple-

menting UQ methods in their machine learning models. Here are some rec-

ommendations:

1. Understand the Type of Uncertainty: Distinguishing between aleatoric

and epistemic uncertainty is essential. Epistemic uncertainty, which

arises from limited knowledge about the data-generating process, can be

reduced by acquiring additional data. In contrast, aleatoric uncertainty,

which reflects inherent variability in the data, can only be minimized by

measuring additional covariates that capture this variability.

2. Incorporate Domain Knowledge: When developing a model, leverage

available domain knowledge to inform the choice of priors and model

structure. Integrating expert insights can help reduce uncertainty, espe-

cially when data is limited.

3. Avoid Improper Scores Like Accuracy for UQ: Scores like accuracy can

lead to misleading UQ. Instead, use proper scoring rules. Always verify

the default scoring settings in the implementation you are using, as many

default to improper scores.

4. Model Calibration: Calibration is essential for good UQ. However, cali-

bration techniques should only be applied after choosing the best model

using proper loss functions like Brier score, cross-entropy loss, or L2 loss.

Calibration alone is insufficient if the model fails to fully utilize the data.

212

Chapter 11. Closing Thoughts

5. Flexible Techniques are Not Always Appropriate: While flexible mod-

els like deep learning and nonparametric approaches offer adaptability,

they may not suit all applications due to the risk of overfitting, especially

with limited data. Many times simple parametric models are more ef-

fective: in simpler tasks, conventional models, like linear or generalized

linear models, may provide better performance.

6. Sensitivity Analysis: Conduct sensitivity analyses by trying differ-

ent approaches, hyperparameter settings, and priors. Compare results

across these variations to assess the robustness and reliability of your un-

certainty estimates. This practice can help identify weaknesses in your

model and guide improvements.

7. Handling Dataset Shifts: In real-world applications, dataset shifts are

common. If you expect shifts in your problem, use models that account

for them through techniques like domain adaptation, transfer learning,

or importance weighting to prevent misleading uncertainty estimates.

Alternatively, test your model’s robustness to shifts by adjusting the

training data to simulate different scenarios.

8. Beware of Overconfidence: UQ methods often assume that the model

is capable of capturing the true underlying structure of the data. This

assumption can lead to overconfidence, especially in the presence of

model misspecification or when faced with ontological uncertainties that

fall outside the model’s predictive scope.

213

11.3. Practical Recommendations for Using UQ in Machine Learning

214

Index

L2 loss function, 47

ABC, 175

Accuracy, 16

Activation function, 36

Approximate Bayesian

Computation, 175

Artificial neural networks, 35

Backpropagation, 40

Bagging, 32

BART, 142

Batch normalization, 147

Bayesian Additive Regression

Trees, 142

Bayesian decision theory, 132

Bayesian models, 128

Bayesian optimization, 138

Boosting, 34

Bootstrap, 149

Brier score, 48

Calibration plot, 89

Class-conditional conformal

region, 116

Classification, 14

Conditional coverage, 102

Conditional PIT values, 81

Conformal classification, 119

Conformal Inference, 103

Conformal Predictions, 103

Conformal Regions, 103

Continuous ranked probability

score, 50

Coverage, 102

Cross-entropy, 48

Cross-validation, 19

CRPS, 50

Data splitting, 19

Deep ensembles, 148

Dropout, 41, 145

Early stopping, 40

Expected calibration error, 90

Feature map, 133

FlexCode, 56

Gaussian process regression, 133

215

.

Highest Predictive Density

Region, 100

Histogram binning, 91

HPD region, 99

Isotonic regression, 92

K-Nearest Neighbors, 28

Kernel estimators, 65

KNN, 28

Kullback-Leibler divergence, 49

Label-conditional conformal

region, 116

Lasso, 26

LFI, 173

Likelihood-free Inference, 173

Logistic regression, 27

Loss function, 15

Marginal coverage, 102

Maximum calibration error, 90

Mixture Density Networks, 60

Mixture Models, 60

Monte Carlo Dropout, 145

Negative loglikelihood, 48

Neural networks, 35

Neyman confidence sets, 186

Normalizing flows, 62

Oracle intervals, 98

Oracle regions, 98

Pinball loss, 67

PIT values, 76

Platt scaling, 91

Prediction band, 98

Prediction intervals, 98

Prediction region, 98

Prediction regions, 98

Prediction set, 98

Probabilistic calibration, 79

Probability Integral

Trasformation, 76

Quantile calibration, 79

Quantile regression, 67

Quantile-based region, 100

Random Forests, 32

Ratio trick, 64

Recalibration of CDEs, 80

Regression, 14

Reliability diagram, 89

Ridge regression, 27

Risk, 15

SGD, 40

Simulator-based Inference, 173

Smoothing kernels, 65

Stochastic Gradient Descent, 40

Symmetric Region, 101

Temperature scaling, 92

Test set, 19

Training set, 19

Tuning parameters, 25

Validation set, 19

216

Bibliography

Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control meth-

ods for comparative case studies: Estimating the effect of california’s

tobacco control program. Journal of the American statistical Association,

105(490), 493–505.

Afrasiabi, M., Mohammadi, M., Rastegar, M., Stankovic, L., Afrasiabi, S., &

Khazaei, M. (2020). Deep-based conditional probability density func-

tion forecasting of residential loads. IEEE Transactions on Smart Grid,

11(4), 3646–3657.

Agostinelli, S., Allison, J., Amako, K. a., Apostolakis, J., Araujo, H., Arce, P.,

Asai, M., Axen, D., Banerjee, S., Barrand, G., et al. (2003). Geant4—a

simulation toolkit. Nuclear instruments and methods in physics research
section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
506(3), 250–303.

Almosallam, I. A., Jarvis, M. J., & Roberts, S. J. (2016). GPz: Non-stationary

Sparse Gaussian Processes for Heteroscedastic Uncertainty Estimation

in Photometric Redshifts. MNRAS, 462, 726–739. https://doi.org/10.

1093/mnras/stw1618

Angelopoulos, A. N., Bates, S., et al. (2023). Conformal prediction: A gentle

introduction. Foundations and Trends® in Machine Learning, 16(4), 494–

591.

Angelopoulos, A. N., Bates, S., Jordan, M., & Malik, J. (n.d.). Uncertainty sets for

image classifiers using conformal prediction. International Conference
on Learning Representations.

217

https://doi.org/10.1093/mnras/stw1618
https://doi.org/10.1093/mnras/stw1618

.

Arnouts, S., Cristiani, S., Moscardini, L., Matarrese, S., Lucchin, F., Fontana, A.,

& Giallongo, E. (1999). Measuring and modelling the redshift evolu-

tion of clustering: the Hubble Deep Field North., 310, 540–556.

Assaf, S. A., & Al-Hejji, S. (2006). Causes of delay in large construction projects.

International Journal of Project Management, 24(4), 349–357.

Assunção, G. O., Izbicki, R., & Prates, M. O. (2024). Is augmentation effective in

improving prediction in imbalanced datasets? Journal of Data Science,
1–16.

Ballesteros-Pérez, P., Rojas-Céspedes, Y. A., Hughes, W., Kabiri, S., Pellicer, E.,

Mora-Melià, D., & del Campo-Hitschfeld, M. L. (2017). Weather-wise:

A weather-aware planning tool for improving construction productiv-

ity and dealing with claims. Automation in construction, 84, 81–95.

Bastos, L. S., Economou, T., Gomes, M. F., Villela, D. A., Coelho, F. C., Cruz,

O. G., Stoner, O., Bailey, T., & Codeço, C. T. (2019). A modelling ap-

proach for correcting reporting delays in disease surveillance data.

Statistics in medicine, 38(22), 4363–4377.

Beaumont, M. A. (2010). Approximate bayesian computation in evolution and

ecology. Annual review of ecology, evolution, and systematics, 41, 379–406.

Beck, R., Lin, C.-A., Ishida, E., Gieseke, F., de Souza, R., Costa-Duarte, M.,

Hattab, M., Krone-Martins, A., & Collaboration, C. (2017). On the

realistic validation of photometric redshifts. Monthly Notices of the Royal
Astronomical Society, 468(4), 4323–4339.

Beck, R., Dobos, L., Budavári, T., Szalay, A. S., & Csabai, I. (2016). Photometric

redshifts for the SDSS Data Release 12. Monthly Notices of the Royal
Astronomical Society, 460(2), 1371–1381.

Bejani, M. M., & Ghatee, M. (2021). A systematic review on overfitting control in

shallow and deep neural networks. Artificial Intelligence Review, 54(8),

6391–6438.

Benaglia, T., Chauveau, D., Hunter, D. R., & Young, D. S. (2009). Mixtools:

An r package for analyzing finite mixture models. Journal of Statistical
Software, 32(6), 1–29.

Benedetti, J. K. (1977). On the nonparametric estimation of regression func-

tions. Journal of the Royal Statistical Society. Series B (Methodological),
248–253.

218

Chapter 11. Bibliography

Benitez, N. (2000). Bayesian Photometric Redshift Estimation. The Astrophysical
Journal, 536(2), 571–583. https://doi.org/10.1086/308947

Berg, N. (2004). No-decision classification: An alternative to testing for statisti-

cal significance. the Journal of socio-Economics, 33(5), 631–650.

Bertin, K., Lacour, C., & Rivoirard, V. (2016). Adaptive pointwise estimation

of conditional density function. Annales de l’Institut Henri Poincaré,
Probabilités et Statistiques, 52(2), 939–980.

Bian, M., & Barber, R. F. (2023). Training-conditional coverage for distribution-

free predictive inference. Electronic Journal of Statistics, 17(2), 2044–

2066.

Bickel, P. J., & Li, B. (2007). Local polynomial regression on unknown manifolds.

In Ims lecture notes–monograph series, complex datasets and inverse problems
(pp. 177–186, Vol. 54). Institute of Mathematical Statisitcs.

Bishop, C. M. (1994). Mixture density networks.

Bishop, C. M. (1997). Bayesian neural networks. J. Braz. Comput. Soc., 4(1).

Blum, M. G. (2010). Approximate bayesian computation: A nonparametric per-

spective. Journal of the American Statistical Association, 105(491), 1178–

1187.

Bordoloi, R., Lilly, S. J., & Amara, A. (2010). Photo-z performance for precision

cosmology. Monthly Notices of the Royal Astronomical Society, 406(2),

881–895.

Boström, H., & Johansson, U. (2020). Mondrian conformal regressors. Conformal
and Probabilistic Prediction and Applications, 114–133.

Boström, H., Johansson, U., & Löfström, T. (2021). Mondrian conformal predic-

tive distributions. Conformal and Probabilistic Prediction and Applications,
24–38.

Bowman, A. W. (1985). A comparative study of some kernel-based nonparamet-

ric density estimators. Journal of Statistical Computation and Simulation,

21(3-4), 313–327.

Brammer, G. B., van Dokkum, P. G., & Coppi, P. (2008). EAZY: A Fast, Public

Photometric Redshift Code., 686, Article 1503-1513, 1503–1513. https:

//doi.org/10.1086/591786

Breiman, L. (2001a). Statistical modeling: The two cultures. Statistical Science,
16(3), 199–231.

219

https://doi.org/10.1086/308947
https://doi.org/10.1086/591786
https://doi.org/10.1086/591786

.

Breiman, L. (2001b). Random forests. Machine Learning, 45(1), 5–32.

Brier, G. W. (1950). Verification of forecasts expressed in terms of probability.

Monthly weather review, 78(1), 1–3.

Cabezas, L. M. C., Soares, G. P., Ramos, T. R., Stern, R. B., & Izbicki, R. (2024).

Distribution-free calibration of statistical confidence sets. arXiv preprint
arXiv:2411.19368. https://arxiv.org/pdf/2411.19368

Cabezas, L. M., Otto, M. P., Izbicki, R., & Stern, R. B. (2025). Regression trees

for fast and adaptive prediction intervals. Information Sciences, 121369.

Calonico, S., Cattaneo, M. D., & Farrell, M. H. (2018). On the effect of bias

estimation on coverage accuracy in nonparametric inference. Journal of
the American Statistical Association, 113(522), 767–779.

Cameron, E., & Pettitt, A. (2012). Approximate bayesian computation for as-

tronomical model analysis: A case study in galaxy demographics and

morphological transformation at high redshift. Monthly Notices of the
Royal Astronomical Society, 425(1), 44–65.

Campos, M., Farinhas, A., Zerva, C., Figueiredo, M. A., & Martins, A. F.

(2024). Conformal prediction for natural language processing: A sur-

vey. Transactions of the Association for Computational Linguistics, 12, 1497–

1516.

Carrasco Kind, M., & Brunner, R. J. (2013). Tpz: Photometric redshift pdfs and

ancillary information by using prediction trees and random forests.

MNRAS, 432(2), 1483–1501.

Cavuoti, S., Amaro, V., Brescia, M., Vellucci, C., Tortora, C., & Longo, G.

(2017). Metaphor: A machine-learning-based method for the proba-

bility density estimation of photometric redshifts., 465(2), 1959–1973.

https://doi.org/10.1093/mnras/stw2930

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system.

Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, 785–794.

Cheng, G., & Chen, Y.-C. (2019). Nonparametric inference via bootstrapping

the debiased estimator. Electronic Journal of Statistics, 13, 2194–2256.

Cheng, K. F., & Chu, C.-K. (2004). Semiparametric density estimation under a

two-sample density ratio model. Bernoulli, 10(4), 583–604.

220

https://arxiv.org/pdf/2411.19368
https://doi.org/10.1093/mnras/stw2930

Chapter 11. Bibliography

Cherian, J. J., Gibbs, I., & Candès, E. J. (2024). Large language model validity via

enhanced conformal prediction methods. arXiv preprint arXiv:2406.09714.

Chernozhukov, V., Wüthrich, K., & Zhu, Y. (2021). Distributional conformal

prediction. Proceedings of the National Academy of Sciences, 118(48).

Chipman, H. A., George, E. I., & McCulloch, R. E. (1998). Bayesian cart model

search. Journal of the American Statistical Association, 93(443), 935–948.

Chipman, H. A., George, E. I., & McCulloch, R. E. (2012). Bart: Bayesian additive

regression trees. Annals of Applied Statistics, 6(1), 266–298.

Chung, Y., Neiswanger, W., Char, I., & Schneider, J. (2021). Beyond pinball loss:

Quantile methods for calibrated uncertainty quantification. Advances
in Neural Information Processing Systems, 34, 10971–10984.

Clark, C., Kinder, S., Egemen, D., Befano, B., Desai, K., Ahmed, S. R., Singh, P.,

Rodriguez, A. C., Jeronimo, J., De Sanjose, S., et al. (2024). Conformal

prediction and monte carlo inference for addressing uncertainty in

cervical cancer screening. International Workshop on Uncertainty for Safe
Utilization of Machine Learning in Medical Imaging, 205–214.

Codeço, C. T., Cruz, O. G., Riback, T. I., Degener, C. M., Gomes, M. F., Villela,

D., Bastos, L., Camargo, S., Saraceni, V., Lemos, M. C. F., et al. (2016).

Infodengue: A nowcasting system for the surveillance of dengue fever

transmission. BioRxiv, 046193.

Comito, M. B., Izbicki, R., do Canto Hubert Junior, P., & Moura, F. (2025).

Improving decision-making in construction: Nonparametric modeling

of weather-induced delays [in prep.].

Cook, S. R., Gelman, A., & Rubin, D. B. (2006). Validation of software for

bayesian models using posterior quantiles. Journal of Computational
and Graphical Statistics, 15(3), 675–692.

Cramér, H. (1928). On the composition of elementary errors: First paper: Math-

ematical deductions. Scandinavian Actuarial Journal, 1928(1), 13–74.

Cranmer, K., Brehmer, J., & Louppe, G. (2020). The frontier of simulation-

based inference. Proceedings of the National Academy of Sciences, 117(48),

30055–30062.

Cranmer, K., Pavez, J., & Louppe, G. (2015). Approximating likelihood ratios

with calibrated discriminative classifiers. arXiv:1506.02169.

221

.

Csillag, D., Paes, L. M., Ramos, T., Romano, J. V., Schuller, R., Seixas, R. B.,

Oliveira, R. I., & Orenstein, P. (2023). Amnioml: Amniotic fluid seg-

mentation and volume prediction with uncertainty quantification. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 37(13), 15494–

15502.

Dalmasso, N., Izbicki, R., & Lee, A. (2020a). Confidence sets and hypothesis

testing in a likelihood-free inference setting. International Conference on
Machine Learning, 2323–2334.

Dalmasso, N., Masserano, L., Zhao, D., Izbicki, R., & Lee, A. B. (2024). Likelihood-

free frequentist inference: Bridging classical statistics and machine

learning for reliable simulator-based inference. Electronic Journal of
Statistics, 18(2), 5045–5090.

Dalmasso, N., Pospisil, T., Lee, A. B., Izbicki, R., Freeman, P. E., & Malz, A. I.

(2020b). Conditional density estimation tools in Python and R with

applications to photometric redshifts and likelihood-free cosmological

inference. Astronomy and Computing, 100362.

Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application.

Cambridge university press.

Dawid, A. P. (1982). The well-calibrated bayesian. Journal of the American Statis-
tical Association, 77(379), 605–610.

Dawid, A. P. (1984). Present position and potential developments: Some per-

sonal views statistical theory the prequential approach. Journal of the
Royal Statistical Society: Series A (General), 147(2), 278–290.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from

incomplete data via the em algorithm. Journal of the royal statistical
society: series B (methodological), 39(1), 1–22.

Dey, B., Andrews, B. H., Newman, J. A., Mao, Y.-Y., Rau, M. M., & Zhou, R.

(2021). Photometric Redshifts from SDSS Images with an Interpretable

Deep Capsule Network, Article arXiv:2112.03939.

Dey, B., Zhao, D., Newman, J. A., Andrews, B. H., Izbicki, R., & Lee, A. B.

(2022). Calibrated predictive distributions via diagnostics for condi-

tional coverage. arXiv:2205.14568.

Dhariwal, P., & Nichol, A. Q. (2021). Diffusion models beat gans on image syn-

thesis. In M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang, & J. W.

222

Chapter 11. Bibliography

Vaughan (Eds.), Advances in neural information processing systems 34:
Annual conference on neural information processing systems 2021, neurips
2021, december 6-14, 2021, virtual (pp. 8780–8794).

Dheur, V., Bosser, T., Izbicki, R., & Ben Taieb, S. (2024). Distribution-free con-

formal joint prediction regions for neural marked temporal point pro-

cesses. Machine Learning, 1–48.

Dheur, V., & Taieb, S. B. (2023). A large-scale study of probabilistic calibration in

neural network regression. International Conference on Machine Learning,

7813–7836.

Dheur, V., & Taieb, S. B. (2024). Probabilistic calibration by design for neural

network regression. International Conference on Artificial Intelligence and
Statistics, 3133–3141.

Di Marzio, M., Fensore, S., Panzera, A., & Taylor, C. C. (2016). A note on

nonparametric estimation of circular conditional densities. Journal of
Statistical Computation and Simulation, 1–10.

Diebold, F. X., Gunther, T. A., & Tay, A. S. (1998). Vevaluating density forecasts

with applications to financial risk managementv, international eco-

nomic re) view, vol. 39, no. 4. Symposium on Forecasting and Empirical
Methods in Macroeconomics and Finance, 863.

Ding, T., Angelopoulos, A., Bates, S., Jordan, M., & Tibshirani, R. J. (2024).

Class-conditional conformal prediction with many classes. Advances
in Neural Information Processing Systems, 36.

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using Real

NVP. arXiv:1605.08803.

Durdyev, S., Hosseini, M. R., Baroudi, B., & Roshanaei, M. (2020). Causes

of delay in residential building construction projects: A case study of

azerbaĳan. Journal of Engineering, Design and Technology, 18(3), 659–672.

Edition, F. (2008). A guide to the project management body of knowledge (pmbok
guide). Project Management Institute.

Efromovich, S. (1999). Nonparametric curve estimation: Methods, theory and appli-
cation. Springer.

Efromovich, S. (2010). Dimension reduction and adaptation in conditional den-

sity estimation. Journal of the American Statistical Association, 105(490),

761–774.

223

.

Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. Chapman;

Hall/CRC.

England, J. R., & Viscarra Rossel, R. A. (2018). Proximal sensing for soil carbon

accounting. Soil, 4(2), 101–122.

Esteves, L. G., Izbicki, R., Stern, J. M., & Stern, R. B. (2016). The logical consis-

tency of simultaneous agnostic hypothesis tests. Entropy, 18(7), 256.

Estoup, A., Lombaert, E., MARIN, J.-M., Guillemaud, T., Pudlo, P., Robert, C. P.,

& CORNUET, J.-M. (2012). Estimation of demo-genetic model proba-

bilities with approximate bayesian computation using linear discrim-

inant analysis on summary statistics. Molecular ecology resources, 12(5),

846–855.

Fan, J., Yao, Q., & Tong, H. (1996). Estimation of conditional densities and

sensitivity measures in nonlinear dynamical systems. Biometrika, 83(1),

189–206.

Fasiolo, M., Wood, S. N., Hartig, F., & Bravington, M. V. (2018). An extended

empirical saddlepoint approximation for intractable likelihoods. Elec-
tron. J. Statist., 12(1), 1544–1578.

Feldman, S., Bates, S., & Romano, Y. (2021). Improving conditional coverage

via orthogonal quantile regression. Advances in neural information pro-
cessing systems, 34, 2060–2071.

Ferraty, F., & Vieu, P. (2006). Nonparametric functional data analysis: Theory and
practice. Springer Science & Business Media.

Folgoc, L. L., Baltatzis, V., Desai, S., Devaraj, A., Ellis, S., Manzanera, O. E. M.,

Nair, A., Qiu, H., Schnabel, J., & Glocker, B. (2021). Is mc dropout

bayesian? arXiv:2110.04286.

Forman, G. (2008). Quantifying counts and costs via classification. Data Mining
and Knowledge Discovery, 17, 164–206.

Foygel Barber, R., Candes, E. J., Ramdas, A., & Tibshirani, R. J. (2021). The

limits of distribution-free conditional predictive inference. Information
and Inference: A Journal of the IMA, 10(2), 455–482.

Frank, M., Fuchs, C., & Zeller-Plumhoff, B. (2024). Helmholtz UQ dictionary

[Accessed: 2024-09-09]. https://dictionary.helmholtz-uq.de/content/

landing_page.html

224

https://dictionary.helmholtz-uq.de/content/landing_page.html
https://dictionary.helmholtz-uq.de/content/landing_page.html

Chapter 11. Bibliography

Fraser, D. A., & Guttman, I. (1956). Tolerance regions. The Annals of Mathematical
Statistics, 27(1), 162–179.

Frazier, P. I. (2018). A tutorial on bayesian optimization. arXiv:1807.02811.

Fröhlich, A., Ramos, T., Cabello, G., Buzatto, I., Izbicki, R., & Tiezzi, D. (2024).

Personalizedus: Interpretable breast cancer risk assessment with local

coverage uncertainty quantification. arXiv:2408.15458.

Gal, Y., & Ghahramani, Z. (2016). Dropout as a bayesian approximation: Rep-

resenting model uncertainty in deep learning. International Conference
on Machine Learning, 1050–1059.

Gansch, R., & Adee, A. (2020). System theoretic view on uncertainties. 2020
Design, Automation & Test in Europe Conference & Exhibition (DATE),
1345–1350.

Genest, C., & Rivest, L.-P. (2001). On the multivariate probability integral trans-

formation. Statistics & probability letters, 53(4), 391–399.

Gibbons, J. D., & Chakraborti, S. (2014). Nonparametric statistical inference: Re-
vised and expanded. CRC press.

Gibbs, I., & Candes, E. (2021). Adaptive conformal inference under distribution

shift. Advances in Neural Information Processing Systems, 34, 1660–1672.

Gibbs, I., & Candès, E. J. (2024). Conformal inference for online prediction

with arbitrary distribution shifts. Journal of Machine Learning Research,

25(162), 1–36.

Glad, I. K., Hjort, N. L., & Ushakov, N. G. (2003). Correction of density esti-

mators that are not densities. Scandinavian Journal of Statistics, 30(2),

415–427.

Gneiting, T., Balabdaoui, F., & Raftery, A. E. (2007). Probabilistic forecasts,

calibration and sharpness. Journal of the Royal Statistical Society Series
B: Statistical Methodology, 69(2), 243–268.

Gneiting, T., & Katzfuss, M. (2014). Probabilistic forecasting. Annual Review of
Statistics and Its Application, 1, 125–151.

Gneiting, T., & Resin, J. (2023). Regression diagnostics meets forecast evalu-

ation: Conditional calibration, reliability diagrams, and coefficient of

determination. Electronic Journal of Statistics, 17(2), 3226–3286.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

225

.

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing

adversarial examples. arXiv:1412.6572.

Graff, P., Feroz, F., Hobson, M. P., & Lasenby, A. (2014). Skynet: An efficient

and robust neural network training tool for machine learning in as-

tronomy., 441(2), 1741–1759. https://doi.org/10.1093/mnras/stu642

Graham, M. L., Connolly, A. J., Ivezić, Ž., Schmidt, S. J., Jones, R. L., Jurić,

M., Daniel, S. F., & Yoachim, P. (2018). Photometric Redshifts with

the LSST: Evaluating Survey Observing Strategies., 155, Article 1, 1.

https://doi.org/10.3847/1538-3881/aa99d4

Gramacy, R. B. (2020). Surrogates: Gaussian process modeling, design, and opti-
mization for the applied sciences. Chapman; Hall/CRC.

Greenberg, D., Nonnenmacher, M., & Macke, J. (2019a). Automatic posterior

transformation for likelihood-free inference. In K. Chaudhuri & R.

Salakhutdinov (Eds.), Proceedings of the 36th international conference on
machine learning (pp. 2404–2414, Vol. 97). PMLR.

Greenberg, D., Nonnenmacher, M., & Macke, J. (2019b). Automatic posterior

transformation for likelihood-free inference. International Conference on
Machine Learning, 2404–2414.

Grivol, G., Izbicki, R., Okuno, A. A., & Stern, R. B. (2024). Flexible conditional

density estimation for time series. Brazilian Journal of Probability and
Statistics, 38(2).

Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017). On calibration of

modern neural networks. Proceedings of the 34th International Conference
on Machine Learning-Volume 70, 1321–1330.

Gupta, C., Podkopaev, A., & Ramdas, A. (2020). Distribution-free binary classi-

fication: Prediction sets, confidence intervals and calibration. Advances
in Neural Information Processing Systems, 33, 3711–3723.

Gupta, C., & Ramdas, A. (2022). Top-label calibration and multiclass-to-binary

reductions. International Conference on Learning Representations.
Gutmann, M. U., & Corander, J. (2016). Bayesian optimization for likelihood-

free inference of simulator-based statistical models. Journal of Machine
Learning Research, 17(125), 1–47.

Gutmann, M. U., Dutta, R., Kaski, S., & Corander, J. (2018). Likelihood-free

inference via classification. Statistics and Computing, 28, 411–425.

226

https://doi.org/10.1093/mnras/stu642
https://doi.org/10.3847/1538-3881/aa99d4

Chapter 11. Bibliography

Hahn, G. J., & Meeker, W. Q. (2011). Statistical intervals: A guide for practitioners
(Vol. 92). John Wiley & Sons.

Hall, P., Racine, J. S., & Li, Q. (2004). Cross-validation and the estimation

of conditional probability densities. Journal of the American Statistical
Association, 99, 1015–1026.

Hall, P. (1987). On kullback-leibler loss and density estimation. The Annals of
Statistics, 1491–1519.

Hall, P. (1992). On bootstrap confidence intervals in nonparametric regression.

The Annals of Statistics, 695–711.

Hall, P., & Murison, R. D. (1993). Correcting the negativity of high-order kernel

density estimators. Journal of Multivariate Analysis, 47(1), 103–122.

Harrison, D., Sutton, D., Carvalho, P., & Hobson, M. (2015). Validation of

Bayesian posterior distributions using a multidimensional Kolmogorov

Smirnov test. Monthly Notices of the Royal Astronomical Society, 451(3),

2610–2624. https://doi.org/10.1093/mnras/stv1110

Heinrich, L. (2022). Learning optimal test statistics in the presence of nuisance

parameters. arXiv:2203.13079.

Hill, J., Linero, A., & Murray, J. (2020). Bayesian additive regression trees: A

review and look forward. Annual Review of Statistics and Its Application,

7, 251–278.

Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models.

CoRR, abs/2006.11239. https://arxiv.org/abs/2006.11239

Ho, J., & Salimans, T. (2022). Classifier-free diffusion guidance. CoRR, abs/2207.12598.

https://doi.org/10.48550/arXiv.2207.12598

Ho, M., Rau, M. M., Ntampaka, M., Farahi, A., Trac, H., & Póczos, B. (2019). A

robust and efficient deep learning method for dynamical mass mea-

surements of galaxy clusters. The Astrophysical Journal, 887(1), 25.

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for

nonorthogonal problems. Technometrics, 12(1), 55–67.

Hoffmann, L., & Elster, C. (2021). Deep ensembles from a bayesian perspective.

arXiv:2105.13283.

Horta, A., Malone, B., Stockmann, U., Minasny, B., Bishop, T., McBratney, A.,

Pallasser, R., & Pozza, L. (2015). Potential of integrated field spec-

227

https://doi.org/10.1093/mnras/stv1110
https://arxiv.org/abs/2006.11239
https://doi.org/10.48550/arXiv.2207.12598

.

troscopy and spatial analysis for enhanced assessment of soil contam-

ination: A prospective review. Geoderma, 241, 180–209.

Huang, C.-W., Krueger, D., Lacoste, A., & Courville, A. (2018). Neural autore-

gressive flows. International Conference on Machine Learning, 2078–2087.

Hüllermeier, E., & Waegeman, W. (2021). Aleatoric and epistemic uncertainty

in machine learning: An introduction to concepts and methods. Ma-
chine Learning, 110, 457–506.

Hulsman, R. (2022). Distribution-free finite-sample guarantees and split con-

formal prediction. arXiv:2210.14735.

Hyndman, R. J., Bashtannyk, D. M., & Grunwald, G. K. (1996). Estimating and

visualizing conditional densities. Journal of Computational & Graphical
Statistics, 5, 315–336.

Ichimura, T., & Fukuda, D. (2010). A fast algorithm for computing least-squares

cross-validations for nonparametric conditional kernel density func-

tions. Computational Statistics Data Analysis, 54(12), 3404–3410.

Inácio, M. d. A., & Izbicki, R. (2018). Conditional density estimation using

fourier series and neural networks. Anais do VI Symposium on Knowledge
Discovery, Mining and Learning, 41–48.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. International conference on
machine learning, 448–456.

Izbicki, R., Lee, A., & Schafer, C. (2014). High-dimensional density ratio estima-

tion with extensions to approximate likelihood computation. Journal
of Machine Learning Research (AISTATS Track), 420–429.

Izbicki, R., Bastos, L. S., Izbicki, M., Lopes, H. F., & Santos, T. M. d. (2021).

How many hospitalizations has the COVID-19 vaccination already

prevented in São Paulo? Clinics, 76, e3250.

Izbicki, R., Cabezas, L. M. C., Colugnatti, F. A. B., Lassance, R. F. L., de Souza,

A. A. L., & Stern, R. B. (2023). React to nhst: Sensible conclusions to

meaningful hypotheses. https://arxiv.org/abs/2308.09112

Izbicki, R., & Lee, A. B. (2016). Nonparametric conditional density estimation

in a high-dimensional regression setting. Journal of Computational and
Graphical Statistics, 25(4), 1297–1316.

228

https://arxiv.org/abs/2308.09112

Chapter 11. Bibliography

Izbicki, R., & Lee, A. B. (2017). Converting high-dimensional regression to

high-dimensional conditional density estimation. Electronic Journal of
Statistics, 11(2), 2800–2831.

Izbicki, R., Lee, A. B., & Freeman, P. E. (2017). Photo-z estimation: An example

of nonparametric conditional density estimation under selection bias.

The Annals of Applied Statistics, 11(2), 698–724.

Izbicki, R., Lee, A. B., & Pospisil, T. (2019). ABC–CDE: Toward approximate

bayesian computation with complex high-dimensional data and lim-

ited simulations. Journal of Computational and Graphical Statistics, 28(3),

481–492.

Izbicki, R., Shimizu, G., & Stern, R. B. (2022). CD-split and HPD-split: Efficient

conformal regions in high dimensions. Journal of Machine Learning Re-
search.

Izbicki, R., Shimizu, G. T., & Stern, R. B. (2020). Distribution-free conditional

predictive bands using density estimators. Proceedings of Machine Learn-
ing Research (AISTATS Track).

James, G., Witten, D., Hastie, T., Tibshirani, R., et al. (2013). An introduction to
statistical learning (Vol. 112). Springer.

Järvenpää, M., Gutmann, M. U., Vehtari, A., & Marttinen, P. (2021). Parallel

Gaussian process surrogate Bayesian inference with noisy likelihood

evaluations. Bayesian Anal., 16(1), 147–178.

Kasa, K., Zhang, Z., Yang, H., & Taylor, G. W. (2024). Adapting conformal

prediction to distribution shifts without labels. arXiv:2406.01416.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y.

(2017). Lightgbm: A highly efficient gradient boosting decision tree.

Advances in neural information processing systems, 3146–3154.

Kendall, A., & Gal, Y. (2017). What uncertainties do we need in bayesian deep

learning for computer vision? Advances in neural information processing
systems, 30.

Kieseler, J., Strong, G. C., Chiandotto, F., Dorigo, T., & Layer, L. (2022). Calori-

metric measurement of multi-TeV muons via deep regression. The
European Physical Journal C, 82(1), 1–26.

229

.

Kieseler, J., Strong, G. C., Chiandotto, F., Dorigo, T., & Layer, L. (2021). Prepro-

cessed dataset for “calorimetric measurement of multi-tev muons via

deep regression". URL https://doi. org/10.5281/zenodo, 5163817.

Koenker, R., & Bassett Jr, G. (1978). Regression quantiles. Econometrica: journal
of the Econometric Society, 33–50.

Kostic, V. R., Turri, G., Novelli, P., Lounici, K., et al. (2024). Neural condi-

tional probability for uncertainty quantification. The Thirty-eighth An-
nual Conference on Neural Information Processing Systems.

Kpotufe, S., & Dasgupta, S. (2012). A tree-based regressor that adapts to in-

trinsic dimension. Journal of Computer and System Sciences, 78(5), 1496–

1515.

Kpotufe, S. (2011). K-NN regression adapts to local intrinsic dimension. Ad-
vances in Neural Information Processing Systems, 729–737.

Kügler, S. D., Gianniotis, N., & Polsterer, K. L. (2016). A spectral model for

multimodal redshift estimation. 2016 IEEE Symposium Series on Com-
putational Intelligence (SSCI), 1–8.

Kuleshov, V., Fenner, N., & Ermon, S. (2018). Accurate uncertainties for deep

learning using calibrated regression. International conference on machine
learning, 2796–2804.

Lafferty, J., & Wasserman, L. (2008). Rodeo: Sparse, greedy nonparametric

regression. The Annals of Statistics, 36(1), 28–63.

Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable

predictive uncertainty estimation using deep ensembles. Advances in
neural information processing systems, 30.

Lancet, T. (2024). Dengue: The threat to health now and in the future.

LeCun, Y., Jackel, L., Bottou, L., Brunot, A., Cortes, C., Denker, J., Drucker,

H., Guyon, I., Muller, U., Sackinger, E., et al. (1995). Comparison of

learning algorithms for handwritten digit recognition. International
conference on artificial neural networks, 60, 53–60.

Lee, A. B., & Izbicki, R. (2016). A spectral series approach to high-dimensional

nonparametric regression. Electronic Journal of Statistics, 10(1), 423–463.

Lei, J., G’Sell, M., Rinaldo, A., Tibshirani, R. J., & Wasserman, L. (2018).

Distribution-free predictive inference for regression. Journal of the Amer-
ican Statistical Association, 113(523), 1094–1111.

230

Chapter 11. Bibliography

Lei, J., & Wasserman, L. (2014). Distribution-free prediction bands for non-

parametric regression. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 76(1), 71–96.

Leistedt, B., & Hogg, D. W. (2017). Data-driven, Interpretable Photometric

Redshifts Trained on Heterogeneous and Unrepresentative Data., 838,

Article 5, 5. https://doi.org/10.3847/1538-4357/aa6332

Li, Q., & Racine, J. S. (2008). Nonparametric estimation of conditional CDF

and quantile functions with mixed categorical and continuous data.

Journal of Business & Economic Statistics, 26(4), 423–434.

Liu, M.-S., Fragkiadaki, K., & Walker, M. (2018). Likelihood-free inference of for-
nax dark matter density profile (Data Analysis Project). Carnegie Mellon

University, Machine Learning Department. https://www.ml.cmu.

edu/research/dap-papers/S18/dap-liu-mao-sheng.pdf

Lueckmann, J.-M., Bassetto, G., Karaletsos, T., & Macke, J. H. (2019). Likelihood-

free inference with emulator networks. Symposium on Advances in Ap-
proximate Bayesian Inference, 32–53.

Lueckmann, J.-M., Goncalves, P. J., Bassetto, G., Öcal, K., Nonnenmacher, M., &

Macke, J. H. (2017). Flexible statistical inference for mechanistic models

of neural dynamics. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in neural
information processing systems 30 (pp. 1289–1299). Curran Associates,

Inc. http://papers.nips.cc/paper/6728-flexible-statistical-inference-

for-mechanistic-models-of-neural-dynamics.pdf

Luo, P., Wang, X., Shao, W., & Peng, Z. (2018). Towards understanding regu-

larization in batch normalization. arXiv:1809.00846.

Ma, X., He, X., & Shi, X. (2016). A variant of k nearest neighbor quantile

regression. Journal of Applied Statistics, 43(3), 526–537.

Mallat, S. (1999). A wavelet tour of signal processing. Academic press.

Malz, A. I., & Hogg, D. W. (2022). How to Obtain the Redshift Distribution

from Probabilistic Redshift Estimates. The Astrophysical Journal, 928(2),

Article 127, 127. https://doi.org/10.3847/1538-4357/ac062f

Mandelbaum, R., Seljak, U., Hirata, C. M., Bardelli, S., Bolzonella, M., Bon-

giorno, A., Carollo, M., Contini, T., Cunha, C. E., Garilli, B., Iovino,

A., Kampczyk, P., Kneib, J. .-., Knobel, C., Koo, D. C., Lamareille, F.,

231

https://doi.org/10.3847/1538-4357/aa6332
https://www.ml.cmu.edu/research/dap-papers/S18/dap-liu-mao-sheng.pdf
https://www.ml.cmu.edu/research/dap-papers/S18/dap-liu-mao-sheng.pdf
http://papers.nips.cc/paper/6728-flexible-statistical-inference-for-mechanistic-models-of-neural-dynamics.pdf
http://papers.nips.cc/paper/6728-flexible-statistical-inference-for-mechanistic-models-of-neural-dynamics.pdf
https://doi.org/10.3847/1538-4357/ac062f

.

Le Fèvre, O., Le Borgne, J. .-., Lilly, S. J., . . . Tasca, L. (2008). Preci-

sion photometric redshift calibration for galaxy-galaxy weak lensing.

Monthly Notices of the Royal Astronomical Society, 386(2), 781–806. https:

//doi.org/10.1111/j.1365-2966.2008.12947.x

Manning, C. D. (2009). An introduction to information retrieval. Cambridge uni-

versity press.

Manokhin, V. (2022). Awesome conformal prediction (Version v1.0.0). Zenodo.

https://doi.org/10.5281/zenodo.6467205

Marin, J.-M., Pudlo, P., Robert, C. P., & Ryder, R. J. (2012). Approximate bayesian

computational methods. Statistics and computing, 22(6), 1167–1180.

Marin, J.-M., Raynal, L., Pudlo, P., Ribatet, M., & Robert, C. (2016). ABC ran-

dom forests for Bayesian parameter inference. Bioinformatics (Oxford,
England), 35. https://doi.org/10.1093/bioinformatics/bty867

Marques, L., & Berenson, D. (2024). Quantifying aleatoric and epistemic dy-

namics uncertainty via local conformal calibration. arXiv:2409.08249.

Masserano, L., Dorigo, T., Izbicki, R., Kuusela, M., & Lee, A. (2023). Simulator-

based inference with waldo: Confidence regions by leveraging predic-

tion algorithms and posterior estimators for inverse problems. Inter-
national Conference on Artificial Intelligence and Statistics, 2960–2974.

Masserano, L., Shen, A., Doro, M., Dorigo, T., Izbicki, R., & Lee, A. B. (2024).

Classification under nuisance parameters and generalized label shift in

likelihood-free inference. International Conference on Machine Learning.

Matheson, J. E., & Winkler, R. L. (1976). Scoring rules for continuous probability

distributions. Management science, 22(10), 1087–1096.

McAllister, R. T., Gal, Y., Kendall, A., Van Der Wilk, M., Shah, A., Cipolla, R., &

Weller, A. (2017). Concrete problems for autonomous vehicle safety:

Advantages of bayesian deep learning.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent

in nervous activity. The bulletin of mathematical biophysics, 5(4), 115–133.

Meier, L., Van de Geer, S., & Bühlmann, P. (2009). High-dimensional additive

modeling. The Annals of Statistics, 37(6B), 3779–3821.

Meinshausen, N., & Ridgeway, G. (2006). Quantile regression forests. Journal
of machine learning research, 7(6).

232

https://doi.org/10.1111/j.1365-2966.2008.12947.x
https://doi.org/10.1111/j.1365-2966.2008.12947.x
https://doi.org/10.5281/zenodo.6467205
https://doi.org/10.1093/bioinformatics/bty867

Chapter 11. Bibliography

Mendes de Oliveira, C., Ribeiro, T., Schoenell, W., Kanaan, A., Overzier, R. A.,

Molino, A., Sampedro, L., Coelho, P., Barbosa, C. E., Cortesi, A., Costa-

Duarte, M. V., Herpich, F. R., Hernandez-Jimenez, J. A., Placco, V. M.,

Xavier, H. S., Abramo, L. R., Saito, R. K., Chies-Santos, A. L., Ederoclite,

A., . . . Zaritsky, D. (2019). The Southern Photometric Local Universe

Survey (S-PLUS): improved SEDs, morphologies, and redshifts with 12

optical filters. Monthly Notices of the Royal Astronomical Society, 489(1),

241–267.

Met office midas open: Uk land surface stations data (1853-current). (2019).

Mian, Z., Deng, X., Dong, X., Tian, Y., Cao, T., Chen, K., & Al Jaber, T. (2024).

A literature review of fault diagnosis based on ensemble learning.

Engineering Applications of Artificial Intelligence, 127, 107357.

Miethke-Morais, A., Cassenote, A., Piva, H., Tokunaga, E., Cobello, V., Ro-

drigues Gonçalves, F. A., dos Santos Lobo, R. A., Trindade, E., Carneiro

D ‘Albuquerque, L. A., & de Paiva Haddad, L. B. (2020). Unraveling

COVID-19-related hospital costs: The impact of clinical and demo-

graphic conditions. MedRxiv, 2020–12.

Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets.

CoRR, abs/1411.1784. http://arxiv.org/abs/1411.1784

Mucesh, S., Hartley, W. G., Palmese, A., Lahav, O., Whiteway, L., Bluck, A.,

Alarcon, A., Amon, A., Bechtol, K., Bernstein, G., et al. (2021). A ma-

chine learning approach to galaxy properties: Joint redshift–stellar

mass probability distributions with Random Forest. Monthly Notices of
the Royal Astronomical Society, 502(2), 2770–2786.

Murphy, A. H., & Epstein, E. S. (1967). Verification of probabilistic predictions:

A brief review. Journal of Applied Meteorology and Climatology, 6(5), 748–

755.

Nakazono, L., R Valença, R., Soares, G., Izbicki, R., Ivezić, Ž., R Lima, E., T Hi-

rata, N., Sodré Jr, L., Overzier, R., Almeida-Fernandes, F., et al. (2024).

The quasar catalogue for s-plus dr4 (qucats) and the estimation of

photometric redshifts. Monthly Notices of the Royal Astronomical Society,

531(1), 327–339.

Navarro, J. F. (1996). The structure of cold dark matter halos. Symposium-
international astronomical union, 171, 255–258.

233

http://arxiv.org/abs/1411.1784

.

Nelder, J. A., & Wedderburn, R. W. (1972). Generalized linear models. Journal of
the Royal Statistical Society Series A: Statistics in Society, 135(3), 370–384.

Nemani, V., Biggio, L., Huan, X., Hu, Z., Fink, O., Tran, A., Wang, Y., Zhang,

X., & Hu, C. (2023). Uncertainty quantification in machine learning

for engineering design and health prognostics: A tutorial. Mechanical
Systems and Signal Processing, 205, 110796.

Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied

linear statistical models.

Neyman, J. (1937). Outline of a theory of statistical estimation based on the

classical theory of probability. Philosophical Transactions of the Royal
Society of London. Series A, Mathematical and Physical Sciences, 236(767),

333–380.

Nichol, A. Q., & Dhariwal, P. (2021). Improved denoising diffusion probabilistic

models. In M. Meila & T. Zhang (Eds.), Proceedings of the 38th interna-
tional conference on machine learning, ICML 2021, 18-24 july 2021, virtual
event (pp. 8162–8171, Vol. 139). PMLR. http://proceedings.mlr.press/

v139/nichol21a.html

Okuno, A. A., & Polo, F. M. (2021). Ocde: Odds conditional density estimator.

arXiv:2107.04118.

Oliveira, R. I., Orenstein, P., Ramos, T., & Romano, J. V. (2024). Split confor-

mal prediction and non-exchangeable data. Journal of Machine Learning
Research, 25(225), 1–38.

Padarian, J., Minasny, B., & McBratney, A. (2022). Assessing the uncertainty

of deep learning soil spectral models using monte carlo dropout. Geo-
derma, 425, 116063.

Papadopoulos, H., Proedrou, K., Vovk, V., & Gammerman, A. (2002). Inductive

confidence machines for regression. European Conference on Machine
Learning, 345–356.

Papamakarios, G., & Murray, I. (2016). Fast ε-free inference of simulation mod-

els with bayesian conditional density estimation. Advances in neural
information processing systems, 29.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshmi-

narayanan, B. (2021). Normalizing flows for probabilistic modeling

234

http://proceedings.mlr.press/v139/nichol21a.html
http://proceedings.mlr.press/v139/nichol21a.html

Chapter 11. Bibliography

and inference. The Journal of Machine Learning Research, 22(1), 2617–

2680.

Papamakarios, G., Pavlakou, T., & Murray, I. (2017). Masked autoregressive

flow for density estimation. Advances in neural information processing
systems, 30.

Papamakarios, G., Sterratt, D., & Murray, I. (2019). Sequential neural likelihood:

Fast likelihood-free inference with autoregressive flows. The 22nd In-
ternational Conference on Artificial Intelligence and Statistics, 837–848.

Pereira, C. A. d. B., & Stern, J. M. (1999). Evidence and credibility: Full bayesian

significance test for precise hypotheses. Entropy, 1(4), 99–110.

Pereira, C. A. d. B., & Stern, J. M. (2022). The e-value: A fully bayesian sig-

nificance measure for precise statistical hypotheses and its research

program. São Paulo Journal of Mathematical Sciences, 16(1), 566–584.

Picchini, U., Simola, U., & Corander, J. (2020). Adaptive MCMC for synthetic

likelihoods and correlated synthetic likelihoods. arXiv:2004.04558.

Platt, J., et al. (1999). Probabilistic outputs for support vector machines and

comparisons to regularized likelihood methods. Advances in large mar-
gin classifiers, 10(3), 61–74.

Podkopaev, A., & Ramdas, A. (2021). Distribution-free uncertainty quantifica-

tion for classification under label shift. Uncertainty in artificial intelli-
gence, 844–853.

Polsterer, K. L. (2016). Dealing with uncertain multimodal photometric red-

shift estimations. Proceedings of the International Astronomical Union,

12(S325), 156–165.

Press, W. H. (2007). Numerical recipes 3rd edition: The art of scientific computing.

Cambridge university press.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018).

Catboost: Unbiased boosting with categorical features. Advances in
neural information processing systems, 6638–6648.

Qin, J. (1998). Inferences for case-control and semiparametric two-sample den-

sity ratio models. Biometrika, 85(3), 619–630.

Quandt, R. E. (1958). The estimation of the parameters of a linear regression

system obeying two separate regimes. Journal of the american statistical
association, 53(284), 873–880.

235

.

Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., & Lawrence, N. D.

(2022). Dataset shift in machine learning. Mit Press.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019).

Language models are unsupervised multitask learners.

Rahaman, R., et al. (2021). Uncertainty quantification and deep ensembles.

Advances in Neural Information Processing Systems, 34, 20063–20075.

Ravikumar, P., Lafferty, J., Liu, H., & Wasserman, L. (2009). Sparse additive

models. Journal of the Royal Statistical Society, Series B, 71(5), 1009–1030.

Ray, E. L., & Reich, N. G. (2018). Prediction of infectious disease epidemics

via weighted density ensembles. PLoS computational biology, 14(2),

e1005910.

Romano, Y., Patterson, E., & Candès, E. (2019). Conformalized quantile regres-

sion. In Advances in neural information processing systems (pp. 3543–3553,

Vol. 32). Curran Associates, Inc.

Romano, Y., Sesia, M., & Candes, E. (2020). Classification with valid and adap-

tive coverage. Advances in Neural Information Processing Systems, 33,

3581–3591.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information

storage and organization in the brain. Psychological review, 65(6), 386.

Rosenblatt, M. (1969). Conditional probability density and regression estima-

tors. In P. Krishnaiah (Ed.), Multivariate analysis ii.
Rowe, B. T., Jarvis, M., Mandelbaum, R., Bernstein, G. M., Bosch, J., Simet,

M., Meyers, J. E., Kacprzak, T., Nakajima, R., Zuntz, J., et al. (2015).

Galsim: The modular galaxy image simulation toolkit. Astronomy and
Computing, 10, 121–150.

Sadeh, I., Abdalla, F. B., & Lahav, O. (2016). ANNz2: Photometric Redshift and

Probability Distribution Function Estimation using Machine Learning.

PASP, 128(968), 104502. https://doi.org/10.1088/1538-3873/128/

968/104502

Sadinle, M., Lei, J., & Wasserman, L. (2019). Least ambiguous set-valued clas-

sifiers with bounded error levels. Journal of the American Statistical As-
sociation, 114(525), 223–234.

236

https://doi.org/10.1088/1538-3873/128/968/104502
https://doi.org/10.1088/1538-3873/128/968/104502

Chapter 11. Bibliography

Sanni-Anibire, M. O., & Egbu, C. (2022). Causes of delay in construction

projects: A review of literature. Built Environment Project and Asset
Management, 12(1), 28–46.

Schervish, M. J. (2012). Theory of statistics. Springer Science & Business Media.

Schervish, M. J., & DeGroot, M. H. (2014). Probability and statistics (Vol. 563).

Pearson Education London, UK:

Schmidt, S. J., Malz, A. I., Soo, J. Y. H., Almosallam, I. A., Brescia, M., Cavuoti,

S., Cohen-Tanugi, J., Connolly, A. J., DeRose, J., Freeman, P. E., Gra-

ham, M. L., Iyer, K. G., Jarvis, M. J., Kalmbach, J. B., Kovacs, E., Lee,

A. B., Longo, G., Morrison, C. B., Newman, J. A., . . . LSST Dark Energy

Science Collaboration. (2020). Evaluation of probabilistic photometric

redshift estimation approaches for The Rubin Observatory Legacy Sur-

vey of Space and Time (LSST). Monthly Notices of the Royal Astronomical
Society, 499(2), 1587–1606.

Schuldt, S., Moerschell, J., Kim, J.-W., & Fang, D. (2021). Weather and construc-

tion: A preliminary study on the impact of weather events on pro-

ductivity. Journal of Construction Engineering and Management, 147(6),

04021058.

Searle, R., McBratney, A., Grundy, M., Kidd, D., Malone, B., Arrouays, D.,

Stockman, U., Zund, P., Wilson, P., Wilford, J., et al. (2021). Digital

soil mapping and assessment for australia and beyond: A propitious

future. Geoderma Regional, 24, e00359.

Selvan, R., Faye, F., Middleton, J., & Pai, A. (2020). Uncertainty quantification in

medical image segmentation with normalizing flows. Machine Learning
in Medical Imaging: 11th International Workshop, MLMI 2020, Held in
Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings
11, 80–90.

Sepasgozar, A., Samad M Eshtehardian, Shirowzhan, S., Nadoushani, Z. M.,

& Foroozanfa, M. (2019). Delay causes and emerging digital tools: A

novel model of delay analysis and risk mitigation. International Journal
of Project Management, 37(7), 941–961.

Shafer, G., & Vovk, V. (2008). A tutorial on conformal prediction. Journal of
Machine Learning Research, 9(3).

Shalizi, C. (2013). Advanced data analysis from an elementary point of view.

237

.

Shiga, M., Tangkaratt, V., & Sugiyama, M. (2015). Direct conditional probability

density estimation with sparse feature selection. Machine Learning,

100(2), 161–182. https://doi.org/10.1007/s10994-014-5472-x

Sisson, S. A., Fan, Y., & Tanaka, M. M. (2007). Sequential monte carlo without

likelihoods. Proceedings of the National Academy of Sciences, 104(6), 1760–

1765.

Sistema de Informação de Agravos de Notificação (SINAN). (2024). Dengue,

chikungunya e zika - sinan portal [Accessed: 2024-09-03]. https ://

portalsinan.saude.gov.br/sinan-dengue-chikungunya

Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., & Ganguli, S. (2015).

Deep unsupervised learning using nonequilibrium thermodynamics.

CoRR, abs/1503.03585. http://arxiv.org/abs/1503.03585

Sohn, K., Lee, H., & Yan, X. (2015). Learning structured output representation

using deep conditional generative models. Advances in neural informa-
tion processing systems, 28.

Sparapani, R., Spanbauer, C., & McCulloch, R. (2021). Nonparametric machine

learning and efficient computation with bayesian additive regression

trees: The bart r package. Journal of Statistical Software, 97, 1–66.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov,

R. (2014). Dropout: A simple way to prevent neural networks from

overfitting. The journal of machine learning research, 15(1), 1929–1958.

Stone, C. J. (1977). Consistent nonparametric regression. The annals of statistics,
595–620.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predic-

tions. Journal of the Royal Statistical Society: Series B (Methodological),
36(2), 111–133.

Strigari, L. E., Frenk, C. S., & White, S. D. (2017). Dynamical models for the

sculptor dwarf spheroidal in a Λcdm universe. The Astrophysical Jour-
nal, 838(2), 123.

Sugiyama, M., Takeuchi, I., Suzuki, T., Kanamori, T., Hachiya, H., & Okanohara,

D. (2010a). Conditional density estimation via least-squares density

ratio estimation. Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, 781–788.

238

https://doi.org/10.1007/s10994-014-5472-x
https://portalsinan.saude.gov.br/sinan-dengue-chikungunya
https://portalsinan.saude.gov.br/sinan-dengue-chikungunya
http://arxiv.org/abs/1503.03585

Chapter 11. Bibliography

Sugiyama, M., Suzuki, T., & Kanamori, T. (2010b). Density ratio estimation: A

comprehensive review (statistical experiment and its related topics).

Kulib Repository, 1703, 10–31.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., &

Fergus, R. (2013). Intriguing properties of neural networks. arXiv:1312.6199.

Székely, G. J., & Rizzo, M. L. (2013). Energy statistics: A class of statistics based

on distances. Journal of statistical planning and inference, 143(8), 1249–

1272.

Székely, G. (2003). E-statistics: Energy of statistical samples (Technical Report

No. 03-05) ((also technical reports by same title, from 2000–2003 and

NSA Grant # MDA 904-02-1-0091 (2000–2002))). Bowling Green State

University, Department of Mathematics and Statistics.

Takeuchi, I., Nomura, K., & Kanamori, T. (2009). Nonparametric conditional

density estimation using piecewise-linear solution path of kernel quan-

tile regression. Neural Computation, 21(2), 533–559.

Tan, Y. V., & Roy, J. (2019). Bayesian additive regression trees and the general

bart model. Statistics in medicine, 38(25), 5048–5069.

Tanaka, M., Coupon, J., Hsieh, B.-C., Mineo, S., Nishizawa, A. J., Speagle,

J., Furusawa, H., Miyazaki, S., & Murayama, H. (2018). Photometric

redshifts for hyper suprime-cam subaru strategic program data release

1. Publications of the Astronomical Society of Japan, 70(SP1). https://doi.

org/10.1093/pasj/psx077

Teye, M., Azizpour, H., & Smith, K. (2018). Bayesian uncertainty estimation for

batch normalized deep networks. International Conference on Machine
Learning, 4907–4916.

Theodoridis, S., & Koutroumbas, K. (2006). Pattern recognition. Elsevier.

Thomas, O., Dutta, R., Corander, J., Kaski, S., & Gutmann, M. U. (2022).

Likelihood-free inference by ratio estimation. Bayesian Analysis, 17(1),

1–31.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological), 267–288.

Tibshirani, R. J., Foygel Barber, R., Candes, E., & Ramdas, A. (2019). Confor-

mal prediction under covariate shift. Advances in neural information
processing systems, 32.

239

https://doi.org/10.1093/pasj/psx077
https://doi.org/10.1093/pasj/psx077

.

Vaicenavicius, J., Widmann, D., Andersson, C., Lindsten, F., Roll, J., & Schön, T.

(2019). Evaluating model calibration in classification. The 22nd Inter-
national Conference on Artificial Intelligence and Statistics, 3459–3467.

Valdenegro-Toro, M., & Mori, D. S. (2022). A deeper look into aleatoric and epis-

temic uncertainty disentanglement. 2022 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW), 1508–1516.

Valle, D., Haneda, L., Izbicki, R., Kamimura, R., Azevedo, B., Gomes, S.,

Sanchez, A., & Almeida, D. (2024a). Nonparametric quantification of

uncertainty in multistep upscaling approaches: A case study on esti-

mating forest biomass in the brazilian amazon [To appear]. Science of
Remote Sensing.

Valle, D., Leite, R., Izbicki, R., Silva, C., & Haneda, L. (2024b). Local uncertainty

maps for land-use/land-cover classification without remote sensing

and modeling work using a class-conditional conformal approach.

International Journal of Applied Earth Observation and Geoinformation.

Valle, D., Izbicki, R., & Leite, R. V. (2023). Quantifying uncertainty in land-use

land-cover classification using conformal statistics. Remote Sensing of
Environment, 295, 113682.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. In I.

Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N.

Vishwanathan, & R. Garnett (Eds.), Advances in neural information pro-
cessing systems 30: Annual conference on neural information processing
systems 2017, december 4-9, 2017, Long Beach, CA, USA (pp. 5998–6008).

Vaz, A. F., Izbicki, R., & Stern, R. B. (2019). Quantification under prior prob-

ability shift: The ratio estimator and its extensions. Journal of Machine
Learning Research, 20(79), 1–33.

Vazquez, J., & Facelli, J. C. (2022). Conformal prediction in clinical medical

sciences. Journal of Healthcare Informatics Research, 6(3), 241–252.

Vovk, V. (2012). Conditional validity of inductive conformal predictors. Asian
conference on machine learning, 475–490.

Vovk, V., Gammerman, A., & Shafer, G. (2005). Algorithmic learning in a random
world (Vol. 29). Springer.

240

Chapter 11. Bibliography

Wager, S., Wang, S., & Liang, P. S. (2013). Dropout training as adaptive regu-

larization. Advances in neural information processing systems, 26.

Wald, A. (1943). Tests of statistical hypotheses concerning several parameters

when the number of observations is large. Transactions of the American
Mathematical society, 54(3), 426–482.

Wasserman, L. (2006). All of nonparametric statistics. Springer Science & Business

Media.

Wehenkel, A., & Louppe, G. (2019). Unconstrained monotonic neural networks.

Advances in neural information processing systems, 32.

Weyant, A., Schafer, C., & Wood-Vasey, W. M. (2013). Likelihood-free cos-

mological inference with type ia supernovae: Approximate bayesian

computation for a complete treatment of uncertainty. The Astrophysical
Journal, 764(2), 116.

Widmann, D., Lindsten, F., & Zachariah, D. (2019). Calibration tests in multi-

class classification: A unifying framework. Advances in neural informa-
tion processing systems, 32.

Wildberger, J., Dax, M., Buchholz, S., Green, S., Macke, J. H., & Schölkopf,

B. (2024). Flow matching for scalable simulation-based inference. Ad-
vances in Neural Information Processing Systems, 36.

Wilks, S. S. (1941). Determination of sample sizes for setting tolerance limits.

The Annals of Mathematical Statistics, 12(1), 91–96.

Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learn-
ing (Vol. 2). MIT press Cambridge, MA.

Winkler, R. L. (1972). A decision-theoretic approach to interval estimation.

Journal of the American Statistical Association, 67(337), 187–191.

Wittman, D. (2009). What lies beneath: Using p (z) to reduce systematic pho-

tometric redshift errors. The Astrophysical Journal Letters, 700(2), L174.

Wood, S. (2010). Statistical inference for noisy nonlinear ecological dynamic

systems. Nature, 466, 1102–4.

Wu, J. T., Leung, K., & Leung, G. M. (2020). Nowcasting and forecasting the

potential domestic and international spread of the 2019-ncov outbreak

originating in wuhan, china: A modelling study. The lancet, 395(10225),

689–697.

241

.

Xiao, Y., Soares, G., Bastos, L., Izbicki, R., & Moraga, P. (2024). Dengue nowcast-

ing in brazil by combining official surveillance data and google trends

information. medRxiv. https://doi.org/10.1101/2024.09.02.24312934

Yang, Y., & Tokdar, S. T. (2015). Minimax-optimal nonparametric regression in

high dimensions. The Annals of Statistics, 43(2), 652–674.

Zadrozny, B., & Elkan, C. (2001). Obtaining calibrated probability estimates

from decision trees and naive bayesian classifiers. Icml, 1, 609–616.

Zadrozny, B., & Elkan, C. (2002). Transforming classifier scores into accurate

multiclass probability estimates. Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining, 694–699.

Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J. (2021). Dive into deep learning.

arXiv:2106.11342.

Zhang, H., Zimmerman, J., Nettleton, D., & Nordman, D. J. (2020). Random

forest prediction intervals. The American Statistician.

Zhao, D., Dalmasso, N., Izbicki, R., & Lee, A. B. (2021). Diagnostics for condi-

tional density models and bayesian inference algorithms. Uncertainty
in Artificial Intelligence, 1830–1840.

Zhou, R., Newman, J. A., Mao, Y.-Y., Meisner, A., Moustakas, J., Myers, A. D.,

Prakash, A., Zentner, A. R., Brooks, D., Duan, Y., Landriau, M., Levi,

M. E., Prada, F., & Tarle, G. (2021). The clustering of DESI-like luminous

red galaxies using photometric redshifts. Monthly Notices of the Royal
Astronomical Society, 501(3), 3309–3331.

Ziegel, J. F., Gneiting, T., et al. (2014). Copula calibration. Electronic journal of
statistics, 8(2), 2619–2638.

242

https://doi.org/10.1101/2024.09.02.24312934

About the Book

Designed for practitioners and researchers with a solid mathematical
foundation, this book provides a detailed exploration of uncertainty
quantification in supervised machine learning. It addresses both
aleatoric and epistemic uncertainties, equipping readers with tools to
enhance prediction reliability across applications such as cosmology
and infectious disease forecasting. Combining theoretical insights with
practical examples, the book helps readers move beyond point
predictions to build models that effectively communicate uncertainty.
Hands-on examples are available in the accompanying GitHub
repository.

About the Author

Rafael Izbicki is a faculty member in the Statistics Department at the
Federal University of São Carlos (UFSCar) in Brazil. He holds a bachelor's
and a master’s degree in Statistics from the University of São Paulo and
a Ph.D. in Statistics from Carnegie Mellon University. Rafael’s research
focuses on uncertainty quantification, statistical theory, foundations of
statistics, and machine learning, with applications across fields like
cosmology, epidemiology, and biology. He has published numerous
papers in leading journals and has held a CNPq Research Fellowship
since 2017. For more information, visit rafaelizbicki.com.

	Introduction
	Motivating Example: Life Expectancy and GDP
	Aleatoric and Epistemic Uncertainty
	Applications of UQ in ML
	Outline of the Book

	I Foundations of Uncertainty Quantification in ML
	Review of Supervised Learning
	Notation and Assumptions
	Loss Functions and Risk
	Optimal Solutions for Different Loss Functions

	Model Selection: Overfitting and Underfitting
	Data Splitting and Cross-Validation

	Bias and Variance Tradeoff
	Tuning Parameters
	Methods to Create Prediction Functions
	Parametric Methods
	K-Nearest Neighbors
	Trees
	Bagging and Random Forests
	Boosting
	Artificial Neural Networks

	The Myth of Imbalanced Data
	Summary

	Quantifying Aleatoric Uncertainty with Conditional Densities
	Loss Functions
	The L2 loss and the Brier Score
	The Cross-Entropy Loss (or the Negative Loglikelihood)
	Continuous Ranked Probability Score (CRPS)
	Accuracy, F1-scores and Related metrics: Improper Metrics for Probabilistic Classification

	Probabilistic Classifiers
	Parametric Approaches
	FlexCode
	Normalization and Spurious Bumps
	Variable Importance
	Theory

	Mixture Models and Networks
	Normalizing Flows
	The Ratio Trick
	Other Conditional Density Estimators
	Quantile Regression
	Pinball Loss
	Estimation the Quantile Function

	Simulated Example: Gaussian Distribution
	Example: Twitter Location Prediction
	Summary

	Diagnostics and Recalibration
	PIT Values: Evaluating Calibration in Regression
	Probabilistic Calibration and Recalibration
	Simulated Example: Gaussian Distribution Revisited

	Conditional PIT values
	Diagnostics
	Monotonic Neural Networks to Estimate the Regression Function
	Handling Multivariate Responses
	Example: Neural Density Inference for Galaxy Images

	Calibration of Classification Models
	Evaluating Marginal Calibration
	Recalibration of Probabilistic Classifiers
	Limitations of Marginal Calibration
	Example

	Summary

	From Conditional Densities to Prediction Regions
	Optimal Prediction Regions
	Tuning Parameters and Notions of Coverage

	Plug-in Prediction Regions
	Conformal Regions
	A Different Perspective on Conformal Regions: Tolerance Regions
	Comparison to Prediction Sets from Linear Models
	Achieving Asymptotic Conditional Coverage
	Label-Conditional Conformal Regions

	Local Conformal Regions
	Conformal Sets for Classification
	Example: Photometric Redshift Prediction

	Comparing Linear, Bayesian, Conformal Methods, and Plug-in Approaches
	Summary

	Capturing Epistemic Uncertainty through Bayesian and Ensemble Techniques
	Bayesian Models
	Aleatoric vs. Epistemic Uncertainty Revisited
	Bayesian-Optimal Prediction Regions

	Gaussian Process Regression
	Feature Space Perspective
	Kernel Perspective
	Bayesian Optimization and Gaussian Processes

	Bayesian Additive Regression Trees (BART)
	Monte Carlo Dropout
	Batch Normalization
	Deep Ensembles
	The Bootstrap
	Summary

	II Applications
	Photometric Redshift Prediction
	Vera C. Rubin Observatory
	Southern Photometric Local Universe Survey (S-PLUS)

	Disease Surveillance: Dengue and COVID-19
	Dengue Nowcasting
	Prediction Model
	Uncertainty Quantification for the Number of Cases
	Results

	COVID-19 Hospitalizations and Vaccination Impact
	Prediction Model for Avoided Hospitalizations
	Results

	Likelihood-Free Inference (LFI)
	Approximate Bayesian Computation via Conditional Density Estimation (ABC-CDE)
	Estimating the Posterior Density via CDE
	Method Selection: Comparing Different Estimators of the Posterior
	Summary Statistics Selection

	Examples
	Examples with Known Posteriors
	CDE and Method Selection
	Summary Statistic Selection

	Application: Estimating a Galaxy's Dark Matter Density Profile

	Likelihood Free Frequentist Inference (LF2I)
	Confidence Sets via Neyman Inversion
	Choosing a Test Statistic
	Likelihood-Based Statistics
	Waldo

	Calibrating the Cutoffs
	Evaluating Coverage and UQ over the Confidence Sets
	Example: Two Moons
	Nuisance Parameters
	Example: Muon energy estimation

	Summary

	Optimizing Construction Schedules: Mitigating Weather-Related Delays
	Estimating the Distribution
	Model Selection
	CDE loss
	Weighted pinball loss

	Example

	Closing Thoughts
	Summary of Key Concepts
	Limitations of UQ Approaches
	Assumptions and Ontological Uncertainties
	Overconfidence
	Uncertainty Cannot Address All Risks

	Practical Recommendations for Using UQ in Machine Learning

