Rafael Izbicki (UFSCar) | PhD
Rafael Izbicki (UFSCar) | PhD
Home
Featured Publications
Lecture Notes
Teaching
Talks
Posts
Students
Contact
Miscellanea
Light
Dark
Automatic
Conformal Prediction
Epistemic Uncertainty in Conformal Scores: A Unified Approach
WE introduce EPICSCORE, a model-agnostic method that enhances conformal prediction by integrating epistemic uncertainty. Compatible with any Bayesian model and maintaining distribution-free guarantees, EPICSCORE adapts prediction intervals based on data availability, achieving both finite-sample marginal and asymptotic conditional coverage.
L. M. C. Cabezas
,
V. S. Santos
,
T. R. Ramos
,
Rafael Izbicki
May, 2025
Proceedings of Machine Learning Research (UAI Track; Oral Presentation)
PDF
Cite
Code
PersonalizedUS: Interpretable Breast Cancer Risk Assessment with Local Coverage Uncertainty Quantification
A. Fröhlich
,
T. Ramos
,
G. Cabello
,
I. Buzatto
,
Rafael Izbicki
,
D. Tiezzi
February, 2025
In
AAAI
PDF
CD-split and HPD-split: Efficient conformal regions in high dimensions
Conformal methods create prediction bands that control average coverage assuming solely i.i.d. data. We introduce CD-split and HPD-split, which yield general prediction regions and converge to the optimal highest predictive density set.
Rafael Izbicki
,
Gilson Shimizu
,
Rafael B. Stern
May, 2022
Journal of Machine Learning Research
PDF
Cite
Code
Flexible distribution-free conditional predictive bands using density estimators
Conformal methods create prediction bands that control average coverage assuming solely i.i.d. data. Besides average coverage, one …
Gilson Shimizu
,
Rafael Izbicki
,
Rafael B. Stern
April, 2020
In
PMLR
PDF
Cite
Source Document
Cite
×