Rafael Izbicki
Rafael Izbicki
Home
Featured Publications
Lecture Notes
Teaching
Talks
Posts
Students
Contact
Miscellanea
Light
Dark
Automatic
Machine Learning
Epistemic Uncertainty in Conformal Scores: A Unified Approach
WE introduce EPICSCORE, a model-agnostic method that enhances conformal prediction by integrating epistemic uncertainty. Compatible with any Bayesian model and maintaining distribution-free guarantees, EPICSCORE adapts prediction intervals based on data availability, achieving both finite-sample marginal and asymptotic conditional coverage.
L. M. C. Cabezas
,
V. S. Santos
,
T. R. Ramos
,
Rafael Izbicki
May, 2025
Proceedings of Machine Learning Research (UAI Track; Oral Presentation)
PDF
Cite
Code
CP4SBI: Local Conformal Calibration of Credible Sets in Simulation-Based Inference
L. M. C. Cabezas
,
V. S. Santos
,
T. R. Ramos
,
P. L. C. Rodrigues
,
Rafael Izbicki
March, 2025
Philosophical Transactions of the Royal Society A
Preprint
Towards instance-wise calibration: Local amortized diagnostics and reshaping of conditional densities (LADaR)
B. Dey
,
D. Zhao
,
B. Andrews
,
J. Newman
,
Rafael Izbicki
,
A. Lee
March, 2025
Machine Learning: Science and Technology
PDF
PersonalizedUS: Interpretable Breast Cancer Risk Assessment with Local Coverage Uncertainty Quantification
A. Fröhlich
,
T. Ramos
,
G. Cabello
,
I. Buzatto
,
Rafael Izbicki
,
D. Tiezzi
February, 2025
In
AAAI
PDF
Regression Trees for Fast and Adaptive Prediction Intervals
L. M. C. Cabezas
,
M. P. Otto
,
Rafael Izbicki
,
R. B. Stern
February, 2025
Information Sciences
Preprint
PDF
Toward the End-to-End Optimization of the SWGO Array Layout
T. Dorigo
,
M. Aehle
,
C. Arcaro
,
M. Awais
,
F. Bergamaschi
,
J. Doniti
,
M. Doro
,
N. R. Gauger
,
Rafael Izbicki
,
J. Kieseler A. B. Lee
,
L. Masserano
,
F. Nardi
,
R. Rajesh
,
L. R. Vergara
,
A. Shen
January, 2025
Nuclear Physics B
Nonparametric quantification of uncertainty in multistep upscaling approaches: a case study on estimating forest biomass in the Brazilian Amazon
D. Valle
,
L. Haneda
,
Rafael Izbicki
,
R. Kamimura
,
B. Azevedo
,
S. Gomes
,
A. Sanchez
,
D. Almeida
January, 2025
Science Of Remote Sensing
PDF
On the utility function of experiments in fundamental science
T. Dorigo
,
M. Doro
,
M. Aehle
,
M. Awais
,
N. R. Gauger
,
Rafael Izbicki
,
J. Kieseler A. B. Lee
,
L. Masserano
,
F. Nardi
,
A. Shen
,
L. R. Vergara
January, 2025
Physics Open
PDF
Dengue nowcasting in Brazil by combining official surveillance data and Google Trends information
Y. Xiao
,
G. Soares
,
L. Bastos
,
Rafael Izbicki
,
P. Moraga
January, 2025
Plos One Neglected Tropical Diseases
PDF
Likelihood-Free Frequentist Inference: Bridging Classical Statistics and Machine Learning for Reliable Simulator-Based Inference
We introduce Likelihood-Free Frequentist Inference (LF2I), a framework that bridges classical statistics and machine learning for valid confidence sets in complex, likelihood-free settings. LF2I provides confidence sets with near finite-sample validity and offers practical diagnostics for empirical coverage, ensuring reliable scientific inference without costly Monte Carlo or bootstrap methods.
N. Dalmasso
,
L. Masserano
,
D. Zhao
,
Rafael Izbicki
,
A. B. Lee
June, 2024
Electronic Journal of Statistics
Preprint
PDF
Code
»
Cite
×