Rafael Izbicki (UFSCar) | PhD
Rafael Izbicki (UFSCar) | PhD
Home
Featured Publications
Lecture Notes
Teaching
Talks
Posts
Students
Contact
Miscellanea
Light
Dark
Automatic
Machine Learning
Epistemic Uncertainty in Conformal Scores: A Unified Approach
WE introduce EPICSCORE, a model-agnostic method that enhances conformal prediction by integrating epistemic uncertainty. Compatible with any Bayesian model and maintaining distribution-free guarantees, EPICSCORE adapts prediction intervals based on data availability, achieving both finite-sample marginal and asymptotic conditional coverage.
L. M. C. Cabezas
,
V. S. Santos
,
T. R. Ramos
,
Rafael Izbicki
May, 2025
Proceedings of Machine Learning Research (UAI Track; Oral Presentation)
PDF
Cite
Code
PersonalizedUS: Interpretable Breast Cancer Risk Assessment with Local Coverage Uncertainty Quantification
A. Fröhlich
,
T. Ramos
,
G. Cabello
,
I. Buzatto
,
Rafael Izbicki
,
D. Tiezzi
February, 2025
In
AAAI
PDF
Regression Trees for Fast and Adaptive Prediction Intervals
L. M. C. Cabezas
,
M. P. Otto
,
Rafael Izbicki
,
R. B. Stern
February, 2025
Information Sciences
Preprint
PDF
Toward the End-to-End Optimization of the SWGO Array Layout
T. Dorigo
,
M. Aehle
,
C. Arcaro
,
M. Awais
,
F. Bergamaschi
,
J. Doniti
,
M. Doro
,
N. R. Gauger
,
Rafael Izbicki
,
J. Kieseler A. B. Lee
,
L. Masserano
,
F. Nardi
,
R. Rajesh
,
L. R. Vergara
,
A. Shen
January, 2025
Nuclear Physics B
Nonparametric quantification of uncertainty in multistep upscaling approaches: a case study on estimating forest biomass in the Brazilian Amazon
D. Valle
,
L. Haneda
,
Rafael Izbicki
,
R. Kamimura
,
B. Azevedo
,
S. Gomes
,
A. Sanchez
,
D. Almeida
January, 2025
Science Of Remote Sensing
PDF
On the utility function of experiments in fundamental science
T. Dorigo
,
M. Doro
,
M. Aehle
,
M. Awais
,
N. R. Gauger
,
Rafael Izbicki
,
J. Kieseler A. B. Lee
,
L. Masserano
,
F. Nardi
,
A. Shen
,
L. R. Vergara
January, 2025
Physics Open
PDF
Likelihood-Free Frequentist Inference: Bridging Classical Statistics and Machine Learning for Reliable Simulator-Based Inference
We introduce Likelihood-Free Frequentist Inference (LF2I), a framework that bridges classical statistics and machine learning for valid confidence sets in complex, likelihood-free settings. LF2I provides confidence sets with near finite-sample validity and offers practical diagnostics for empirical coverage, ensuring reliable scientific inference without costly Monte Carlo or bootstrap methods.
N. Dalmasso
,
L. Masserano
,
D. Zhao
,
Rafael Izbicki
,
A. B. Lee
June, 2024
Electronic Journal of Statistics
Preprint
PDF
Code
Classification under Nuisance Parameters and Generalized Label Shift in Likelihood-Free Inference
The paper introduces a novel approach to classifying events under generalized label shift by framing classification as hypothesis testing, which leads to valid uncertainty quantification. This is demonstrated through applications in biology and astroparticle physics.
L. Masserano
,
A. Shen
,
M. Doro
,
T. Dorigo
,
Rafael Izbicki
,
A. B. Lee
May, 2024
Proceedings of Machine Learning Research (ICML Track)
PDF
Distribution-Free Conformal Joint Prediction Regions for Neural Marked Temporal Point Processes
V. Dheur
,
T. Bosser
,
Rafael Izbicki
,
S. Ben Taieb
February, 2024
Machine Learning
PDF
Is augmentation effective in improving prediction in imbalanced datasets?
G. O. Assunção
,
Rafael Izbicki
,
M. O. Prates
February, 2024
Machine Learning
PDF
»
Cite
×