Rafael Izbicki

Rafael Izbicki

Assistant Professor of Statistics

Federal University of São Carlos (UFSCar)

Biography

I’m an Assistant Professor at the Department of Statistics of the Federal University of São Carlos (UFSCar), Brazil. From 2010 to 2014, I was a PhD student in the Department of Statistics & Data Science at Carnegie Mellon University (CMU) (PhD thesis), USA. Prior to that, I graduated and received my Master’s degree at the University of São Paulo (USP) (Master’s dissertation). I am a Research Fellow at CNPq (2017-2024).

I am interested in theory, methodology, applications, and foundations of statistics, machine learning and data science. I am a member of the following research groups/collaborations:


In case you are looking for Rafael Stern, his site is here.

Interests
  • Statistical Machine Learning
  • Uncertainty Quantification in ML
  • Foundations of Statistics
  • Astrostatistics
  • Epidemiology
Education
  • PhD in Statistics, 2014

    Carnegie Mellon University

  • Master in Statistics, 2010

    University of São Paulo

  • BSc in Statistics, 2009

    University of São Paulo

Recent Publications

(2024). Likelihood-Free Frequentist Inference: Bridging Classical Statistics and Machine Learning for Reliable Simulator-Based Inference. Electronic Journal of Statistics.

Preprint

(2024). Classification under Nuisance Parameters and Generalized Label Shift in Likelihood-Free Inference. Proceedings of Machine Learning Research (ICML Track).

PDF

(2024). Distribution-Free Conformal Joint Prediction Regions for Neural Marked Temporal Point Processes. Machine Learning.

PDF

(2024). Regression Trees for Fast and Adaptive Prediction Intervals . Information Sciences.

Preprint PDF

(2024). Is augmentation effective in improving prediction in imbalanced datasets?. Machine Learning.

PDF

Lecture Notes

Teaching

Undergraduate courses

  • Bayesian Inference (19/2, 23/1)
  • Computational Statistics (14/2, 15/2, 16/2, 24/2)
  • Data Mining (14/2, 15/1, 16/1, 17/1, 18/1, 19/1, 20/1, 21/1, 22/1, 23/1, 24/1)
  • Introduction to Statistics (15/1, 17/2, 18/1, 19/1, 20/2, 21/1)
  • Perspectives in Data Science (21/2, 24/1)
  • Statistical Inference (22/2, 23/2)

Graduate courses

  • Advanced Statistical Machine Learning (24/2)
  • Decision Theory (15/2, 16/2)
  • Probability Theory (16/1)
  • Statistical Inference (18/1)
  • Statistical Machine Learning (17/2, 18/2, 19/2, 20/1, 20/2, 21/2)

Recent Posts

Students

PhD

  • Matheus Dorival Leonardo Bombonato Menes – (current student)
  • Rafael Peçanha Waissman – (current student)
  • Everton Artuso – (current student)
  • João Flávio Andrade Silva – (current student)
  • Luben Miguel Cruz Cabezas – (current student)
  • Milene Regina dos Santos – (current student)
  • Gabriel Oliveira - (co-advisor, current student)
  • Tiago Mendonça dos Santos - Computationally efficient predictive methods based on random forests (co-advisor, 2019-2024)
  • Gilson Shimizu – Bandas de predição usando densidade condicional estimada e um modelo lda com covariáveis (2017-2021)
  • Marco Henrique de Almeida Inacio – Conditional independence testing, two sample comparison and density estimation using neural networks (2017-2020)

Master

  • Bruna Nogueira Souza (MBA in Data Science 2024-)
  • Marcio Alves Oliveira (MBA in Data Science 2024-)
  • Henrique Hiray (MBA in Data Science 2024-)
  • Maria Luiza Matos Silva – Methods for evaluating the integration of discrete phylogenetic characters (2021-2024)
  • Mateus Borges Comito - Improving decision-making in construction: Nonparametric modeling of weather-induced delays (2021-2024)
  • Cristina Precioso do Amaral Melo - Análise de Sentimento na Cobertura sobre China pelo New York Times: Uma Comparação entre Multinomial Naive Bayes e DistilBERT - (MBA in Data Science 2023-2024)
  • Gedalias Hugo de Oliveira Valentim - Perfil profissiográfico dos auditores da Controladoria Geral da União - (MBA in Data Science 2023-2024)
  • Rodrigo Vidi (MBA in Data Science 2023-2024)
  • Tobias de São Pedro - Central de Recuperação do Crédito Tributário: estudo de modelo de predição de pagamento após contato telefônico com contribuintes devedores de ICMS (MBA in Data Science 2023-2024)
  • Rodrigo Vidi - Algoritmos de agrupamento e classificação para a identificação de empresas emissoras de notas fiscais inidôneas - (MBA in Data Science 2023-2024)
  • Mateus Piovezan Otto – Scalable and interpretable kernel methods based on random Fourier features - (2022-2023)
  • Víctor Candido Reis – Small and time-efficient distribution-free predictive regions (2021-2023)
  • Carlos Miguel Toste Sisto – Uso de Conformal Predictions para mensurar incertezas em previsões de modelos de Machine Learning - (MBA in Data Science 2022-2023)
  • Marcela Musetti - FBST em problemas de likelihood-free - (co-advisor, 2021-2023)
  • Bruno Tardelli – Sistema de Recomendação de produtos bancários: estudo de caso em uma cooperativa de crédito - (MBA in Data Science 2021-2022)
  • Felipe Hernandez Bisca – Multivariate conditional density estimation with copulas (2019-2021)
  • Fabiane Yassukawa - Aplicações de machine learning para diagnóstico de covid-19: análise de imagens tomográficas (MBA in Data Science 2020-2020)
  • Suleimy Cristina Mazin - Técnicas de machine learning para predizer dor pélvica crônica (MBA in Data Science 2020-2020)
  • Deborah Bassi Stern – Vector representation of texts applied to prediction models (2018-2020)
  • Victor Coscrato – Neural networks as an optimization tool for regression (2018-2019)
  • Rafael de Carvalho Ceregatti – A bayesian nonparametric approach for the two-sample problem (2016-2019, co-advisor)
  • Afonso Fernandes Vaz – Improved quantification under domain shift (2016-2018)
  • Marco Henrique de Almeida Inacio – Comparing two populations using Bayesian Fourier series density estimation (2016-2017)
  • Gretta Rossi Ferreira – Estimação de densidades condicionais com aplicações à astronomia (2015-2017)

Undergraduate

  • Fernanda Waltrs Freitas - (current student)
  • Lucas Sala Bastinni - (current student)
  • Guilherme Pedrilho Soares - (current student)
  • Bruno Marcondes Resende - (current student)
  • Guilherme Pedrilho Soares - Exploring the Present: Predicting Dengue Epidemics in Brazilian States with Google Trends - (2023-2024)
  • Gabriela Soares - Uma abordagem estatística sobre a estimação de redshifts de quasares usando dados do S-PLUS - (2022)
  • Luben Miguel Cruz Cabezas - Métodos de Aprendizado Ativo (2021-2022)
  • Luben Miguel Cruz Cabezas (FAPESP) - A data-splitting approach for comparing hierarquical clustering algorithms (2020-2021)
  • Maria Luiza Matos Silva - Estudo de interações genéticas relacionadas à Esclerose Lateral Amiotrófica (2020-2020)
  • Víctor Candido Reis - Processos Gaussianos com enfoque em análise de regressão (2019-2019)
  • Mateus Borges Comito (CNPq) - Estudo de pessoas desaparecidas através de técnicas de aprendizado de máquina (2019-2020)
  • Víctor Candido Reis (CNPq; FAPESP) - Testes de hipóteses suaves para problemas multivariados (2018-2019)
  • Marcela Musetti - Combining photometric redshift estimators (2018)
  • Daniel Simionato (CNPq) – Inferência Via Métodos Preditivos (2017-2018)
  • Andressa de Jesus Dantas – Understanding Zika patients (2017-2018)
  • João Dantas – Optimal strategies in pocker (2017-2018)
  • Victor Coscrato – Word2Vec vs Bag-of-Words (2017)
  • Rafael Catoia – Collective posterior: can the updating time change it? (2017)
  • Mauricio Najjar Da Silveira (CNPq) – Comparação não-paramétrica de grupos com base em estimação de densidades (2016-2017; co-advisor)
  • Ana Molina – Comparação entre métodos de construção de árvores filogenéticas (2016-2017)
  • Victor Coscrato (CNPq) – Testes de Hipóteses Agnósticos (2016-2017)
  • Douglas Raul de Freitas – Alguns aspectos sobre o bigdata na estatística (2016-2017)
  • Letícia Octaviano da Cruz (CNPq) – Monitoramento Online da Dengue (2015-2016)
  • Paula Ianishi – Técnicas de predição para dados desbalanceados aplicadas ao problema de classificação morfológica de galáxias (2015-2016)
  • Felipe Henrique Mosquetta Oliveira – Tratamento e Classificação de Dados do Twitter sobre Política e Clima (2015)
  • Bruno Roberto Guimarães – Classificação automática de resenhas sobre jogos na Google Play Store (2015)

Contact

  • rafaelizbicki at gmail dot com

Miscellanea

Twitter Threads

Artigos de Divulgação

  • “Vidas Salvas: Projeção aponta que, após vacina, mais de mil mortes foram evitadas no Rio” (O Globo, 16/06/21). Artigo; Capa

  • “Levantamento mostra queda na idade média dos internados no Rio por Covid-19 após doses de reforço em idosos” (O Globo, 16/11/21). Artigo

  • “Alta de casos e baixa ocupação de leitos” (CBN, 8/6/22) Entrevista

  • “Fapesp reajusta bolsas de pesquisa em até 45% a partir de agosto” (Folha de São Paulo, 26/06/24). Artigo

The secular nano-Hagaddah

  • A very small passover Hagaddah I created for my daughters. In English and in Portuguese